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Abstract 
This paper presents an analytical model solution for the prediction of the one-dimensional (1D) time-
dependent groundwater flow profile in an unconfined system. Groundwater level can be estimated 
by using the proposed solution with several input data, such as permeability layer thicknesses, specific 
yield. This hydraulic charge prediction problem is modeled as a boundary value problem governed by 
the classic heat diffusion equations. The solution technique employs the separation of variables 
method and the result are compared to the 2 implicit numerical solutions of CrankNicholson and FTCS, 
the solution displays a reasonable groundwater flow head in contexts of sand-gravel aquifer during 
different time periods.  
Key words: Variable Separation, Groundwater Equation, Diffusion Equation, Porous Media  

1  Introduction 
Today’s water resources are increasingly threatened due to natural, household, industrial and 
agricultural pollution and intensive consumption. Hydrogeology is therefore a subject of prime 
importance for a society like ours: it must help to properly manage drinking water resources and 
ensure the lowest possible pollution levels for its inhabitants. It is for these reasons that it is necessary 
to provide the means to correctly predict the behavior of water flows and the transport of 
contaminants in the subsoil. 

As for several problems and phenomena of physics which can be modeled by partial differential 
equations (PDE). The phenomena of groundwater flows are modeled by PDEs, associated with 
boundary conditions and initial conditions. 

The groundwater equation that is governed through Darcy law and the continuity equation were the 
subject of a set of research. Among the first researches that concerned with this equation [1, 2, 3, 4, 
5, 6, 7, 8, 9, 10]. Initially, these researches focused on trying to understand the behavior of 
groundwater and its flow mechanisms in porous media. These researches have focused to find 
solutions to the groundwater equation, the researchers analyzed the mechanisms of evolution and 
regular groundwater flow regeneration in the aquifers. as a result, it has been proposed and 
developed a set of analytical solutions of the groundwater flow equation as a model of forecasting 
and simulating the dynamic behavior of groundwater based on boundary conditions [11, 12, 13, 14, 
4]. 
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In the same context, some recherche has focused on finding in obtaining analytical solutions to the 
linear Boussinesq equation by adopting the uniform recharge of the rainfall rate, therefore these 
solutions are exploited to estimate the groundwater levels change and drainage flow [13, 14, 30]. 
Other research focused on researching analytical solutions for the same equation, taking into account 
the hypothesis of temporal variation of the level of rainfall [25, 31, 22, 23, 24, 16]. 

Some other research has worked on the Laplace Transform method with the aim of developing an 
analytical solution to express the distribution of groundwater level [3, 26, 27, 28, 29]. 

The present study focused on method of Separation of Variables for solving the groundwater equation 
using Darcy’s law as a theoretical basis and applied the principle of mass conservation (continuity 
equation) to govern the groundwater flow. 

The remainder of this paper is organized as follows: Section 2 introduces the governing of 
groundwater equation. Section 3 and 4 proposes the analytical method of one-dimensional diffusion 
operator in rectangular coordinates using method of separation of variable. Section 5 demonstrates 
the feasibility of the analytical solution using synthetic examples and the compared with a two 
numerical method, it comes in a FTCS method (Forward Time Centered Space [30] ) and the 
CrankNicholson method [31] . Section 6 provides discussions the result. Finally, Section 7 summarizes 
and concludes this work. 

 

2  Derivation of Groundwater Equation 
We begin by deducting of partial differential equations that occur in describing flows in porous media 
phenomena. The general groundwater flow equation is deducted from Darcy’s law and from the 
continuity equation. The law of conservation of mass for transient flow shows that the net rate of 
change of density is exactly opposite to net rate of change of volume itself (V), in other words, the net 
rate of penetration of a fluid in a control volume is exactly equal to the net rate of change of storage 
of the mass of fluid in the same control volume. 

 

𝐼𝑛𝑓𝑙𝑜𝑤 𝑁𝑒𝑡𝑅𝑎𝑡𝑒 = 𝐼𝑛𝑓𝑙𝑜𝑤 − 𝑂𝑢𝑡𝑓𝑙𝑜𝑤 = 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 𝑅𝑎𝑡𝑒 (2.1) 

This is equivalent: 

            𝐼𝑛𝑓𝑙𝑜𝑤 𝑁𝑒𝑡𝑅𝑎𝑡𝑒 = −𝑑𝑖𝑣(𝜌𝜈⃖) = −(
𝜕(𝜌𝑣𝑥)

𝜕𝑥
+
𝜕(𝜌𝑣𝑦)

𝜕𝑦
+
𝜕(𝜌𝑣𝑧)

𝜕𝑧
) (2.2) 
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Figure  1: Groundwater control volume 

 

It should be noted that In steady-state flow, the change in storage within the control volume is equal 
to zero. In transient flow, the change in storage It should violate zero, Thus, the previous equation 2 
will become: 

 

 −𝑑𝑖𝑣(𝜌𝜈) = −
𝜕(𝜌𝑣𝑥)

𝜕𝑥
−
𝜕(𝜌𝑣𝑦)

𝜕𝑦
−
𝜕(𝜌𝑣𝑧)

𝜕𝑧
=
𝜕(𝜌𝜂)

𝜕𝑡
 (2.3) 

 

where 𝜂 is the porous media porosity. The 
𝜕(𝜌𝜂)

𝜕𝑡
 term is the time rate of fluid mass change per unit 

volume of the control volume (the term has dimensions 𝑀/𝐿3𝑇). We consider that it is a saturated 

porous medium. When using the chain-rule, the 
𝜕(𝜌𝜂)

𝜕𝑡
 term will become: 

 

 
𝜕(𝜌𝜂)

𝜕ℎ

𝜕ℎ

𝜕𝑡
=
𝜕(𝜌𝜂)

𝜕𝑡
 (2.4) 

 

When it is a transient saturated flow, the change rate in fluid storage in the control volume is related 

to the change rate in the hydraulic head. so the 
𝜕(𝜌𝜂)

𝜕𝑡
 term becomes: 

 

 𝜂
𝜕𝜌

𝜕ℎ
+ 𝜌

𝜕𝜂

𝜕ℎ
=
𝜕(𝜌𝜂)

𝜕𝑡
 (2.5) 
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The 𝜌
𝜕𝜂

𝜕ℎ
 term in equation 5 is the water mass produced by the compression or expansion of the 

porous media, the 𝜂
𝜕𝜌

𝜕ℎ
 term is the water mass produce by the compression or expansion of the fluid. 

for the saturated case, if the porosity increases 
𝜕𝜂

𝜕ℎ
> 0, or if the fluid density increase (

𝜕𝜌

𝜕ℎ
> 0). the 

water can enter the control volume. 

we pose now 𝛼 as the porous media compressibility and 𝛽 as the fluid compressibility, and 𝜎𝑒 as a 
change in effective stress (Compression or expansion of the porous media). 

For the saturated case: 

 

 𝑑𝜎𝑒 = −𝜌𝑔𝑑Φ (2.6) 

 

Were Φ is pressure head. since 𝑑Φ = (ℎ − 𝑧) = 𝑑ℎ − 𝑑𝑧 then: 

 

 𝑑𝜎𝑒 = −𝜌𝑔𝑑ℎ (2.7) 

 

Now we can define the compressibility of porous media 𝛼 

 

 𝛼 = −
𝑑𝑉𝑓

𝑉

1

𝑑𝜎𝑒
=

𝑑𝜂

𝑑𝜎𝑒
 (2.8) 

 

Where 𝑉 is the fluid volume and it is the control volume. let combining equations 7 and 8 we write : 

 

 
𝑑𝜂

𝑑ℎ
= 𝛼𝜌𝑔 (2.9) 

 

We can define the fluid compressibility 𝛽 as: 

 

 𝛽 =
𝑑𝑉𝑓

𝑉𝑓

1

𝑑𝑝
 (2.10) 
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We note 𝑝 the pressure of the fluid. the expression of the change in pressure is given by : 

 

 𝑑𝑝 = 𝜌𝑔𝑑Φ = 𝜌𝑔𝑑ℎ (2.11) 

 

And with 𝑑𝑉𝑓/𝑉𝑓 = 𝑑𝜌/𝜌, we can write equation 10 as: 

 

 𝛽 =
𝑑𝜌

𝜌

1

𝜌𝑔𝑑ℎ
 (2.12) 

or 

 

 
𝑑𝜌

𝑑ℎ
= 𝜌2𝑔𝛽 (2.13) 

 

After substituting of equations 9 and equation 13 into equation 4, we’ve got: 

 

 
𝜕

𝜕𝑡
(𝜌𝑛) = (𝜌

𝜕𝑛

𝜕ℎ
+ 𝑛

𝜕𝜌

𝜕ℎ
)
𝜕ℎ

𝜕𝑡
= (𝜌2𝑔𝛼 + 𝑛𝜌2𝑔𝛽)

𝜕ℎ

𝜕𝑡
 (2.14) 

 

Now we can define the specific storage 𝑆𝑠 as: 

 

 𝑆𝑠 = 𝜌𝑔(𝛼 + 𝑛𝛽) (2.15) 

 

The dimensions of the specific storage 𝑆𝑠 are 𝐿−1, this term is representing the water volume that an 
aquifer unit volume releases from storage for a unit decline in hydraulic head. 

After substituting of equation 15 into equation 14, we’ve got: 

 

 
𝜕

𝜕𝑡
(𝜌𝑛) = 𝜌𝑆𝑠

𝜕ℎ

𝜕𝑡
 (2.16) 

 

After substituting of equation 16 into equation 3, we’ve got: 

                    −
𝜕

𝜕𝑥
(𝜌𝜈𝑥) −

𝜕

𝜕𝑦
(𝜌𝜈𝑦) −

𝜕

𝜕𝑧
(𝜌𝜈𝑧) = 𝜌𝑆𝑠

𝜕ℎ

𝜕𝑡
                                                                           

(2.17) 
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We suppose that the density 𝜌 it’s a constant, equation 17 becomes: 

 

 𝜌(−
𝜕

𝜕𝑥
𝜈𝑥 −

𝜕

𝜕𝑦
𝜈𝑦 −

𝜕

𝜕𝑧
𝜈𝑧) = 𝜌𝑆𝑠

𝜕ℎ

𝜕𝑡
 (2.18) 

 

We simplify equation 18 by eliminating 𝜌 from both sides of the equation, we have compensated in 𝜈 

according to Darcy law (𝜈𝑥 = 𝐾𝑥
𝜕ℎ

𝜕𝑥
, 𝜈𝑦 = 𝐾𝑦

𝜕ℎ

𝜕𝑦
,𝜈𝑧 = 𝐾𝑧

𝜕ℎ

𝜕𝑧
). 

 

 
𝜕

𝜕𝑥
(𝐾𝑥

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦

𝜕ℎ

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑧

𝜕ℎ

𝜕𝑧
) = 𝑆𝑠

𝜕ℎ

𝜕𝑡
 (2.19) 

 

The equation 19 represents the transient saturated-flow equation, when 𝐾𝑥,𝐾𝑦,𝐾𝑧 are homogeneous, 

they will be constants and equation 19 can be written: : 

 

 𝐾𝑥
𝜕2ℎ

𝜕𝑥2
+ 𝐾𝑦

𝜕2ℎ

𝜕𝑦2
+ 𝐾𝑧

𝜕2ℎ

𝜕𝑧2
= 𝑆𝑠

𝜕ℎ

𝜕𝑡
 (2.20) 

 

If the porous media is also isotropic𝐾𝑥 = 𝐾𝑦 = 𝐾𝑧 = 𝐾, equation 20 is written: 

 

 
𝜕2ℎ

𝜕𝑥2
+
𝜕2ℎ

𝜕𝑦2
+
𝜕2ℎ

𝜕𝑧2
=
𝑆𝑠

𝐾

𝜕ℎ

𝜕𝑡
 (2.21) 

 

In the case of a confined aquifer, equation 21 is written: 

 

 
𝜕2ℎ

𝜕𝑥2
+
𝜕2ℎ

𝜕𝑦2
=
𝑆

𝑇

𝜕ℎ

𝜕𝑡
 (2.22) 

 

Where 𝑏 is constant thickness, 𝑆 = 𝑆𝑠𝑏 and 𝑇 = 𝐾𝑏. 

 

3  One-Dimensional groundwater equation 
We begin by examining the last groundwater flow phenomena (Diffusion), that are treated similarly 
with a linear diffusion partial differential equation. 
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𝜕

𝜕𝑥
(𝐾𝑥

𝜕

𝜕𝑥
ℎ(𝑥, 𝑦, 𝑧, 𝑡)) +

𝜕

𝜕𝑦
(𝐾𝑦

𝜕

𝜕𝑦
ℎ(𝑥, 𝑦, 𝑧, 𝑡)) +

𝜕

𝜕𝑧
(𝐾𝑧

𝜕

𝜕𝑧
ℎ(𝑥, 𝑦, 𝑧, 𝑡)) (3.1) 

 

 = 𝑆𝑠
𝜕

𝜕𝑡
ℎ(𝑥, 𝑦, 𝑧, 𝑡) − 𝑞(𝑥, 𝑦, 𝑧, 𝑡)  

We examine the following partial differential equations in one dimension that have linear operators. 

 

 (
𝑑𝐾(𝑥)

𝑑𝑥
)(
𝜕

𝜕𝑥
ℎ(𝑥, 𝑡)) + 𝐾(𝑥)(

𝜕2

𝜕𝑥2
ℎ(𝑥, 𝑡)) = 𝑆𝑠(

𝜕ℎ(𝑥,𝑡)

𝜕𝑡
) − 𝑞(𝑥, 𝑡) (3.2) 

 

ℎ(𝑥, 𝑡) denotes the spatial-time dependent groundwater head, 𝐾(𝑥) denotes the hydraulic 
conductivity, 𝑆𝑆 denotes the specific storage, and 𝑞(𝑥, 𝑡) denotes the time rate of the input/output 
source into the medium volume. If 𝑞(𝑥, 𝑡) = 0, then there are no flow sources in the system and this 
non homogeneous partial differential equation reduces to its corresponding homogeneous equation 
: 

 

 (
𝑑𝐾(𝑥)

𝑑𝑥
)(
𝜕

𝜕𝑥
ℎ(𝑥, 𝑡)) + 𝐾(𝑥)(

𝜕2

𝜕𝑥2
ℎ(𝑥, 𝑡)) = 𝑆𝑠(

𝜕ℎ(𝑥,𝑡)

𝜕𝑡
) (3.3) 

 

We consider that the medium is uniform. which means that the coefficient of permeability 𝐾 is 
spatially invariant, we can write to them as simple constants. Then, equation 3 is simplified by: 

 

 𝑘(
𝜕2

𝜕𝑥2
ℎ(𝑥, 𝑡)) =

𝜕ℎ(𝑥,𝑡)

𝜕𝑡
 (3.4) 

 

Where 𝑘, the groundwater flow diffusivity or hydraulic diffusivity of the medium, are 𝐿2/𝑇: 

 

 𝑘 =
𝐾

𝑆𝑠
 (3.5) 

 

This partial differential equation for groundwater flow phenomena is characterized that the hydraulic 
gradient (slope) is found from the first derivative and the curve concavity the is given from the second 
derivative with respect to the spatial variable x. In addition, the time rate of change, or excavation 

rate (
𝜕ℎ(𝑥,𝑡)

𝜕𝑡
), is given as the first derivative with respect to the time variable 𝑡. 
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4 Groundwater flow equation. Separation method 

In this level, we will proceed to solve the groundwater flow equation (3.4) by the variable separation 
method: 

 

 𝑘(
𝜕2

𝜕𝑥2
ℎ(𝑥, 𝑡)) =

𝜕ℎ(𝑥,𝑡)

𝜕𝑡
 (4.1) 

We note that 𝑥 represents the position in the one-dimensional medium (an aquifer) that we can 
identify with the interval [0, 𝐿]. The hydraulic height in this aquifer at time t and at location 𝑥 is ℎ(𝑥, 𝑡). 
A typical problem is to consider that the distribution of the hydraulic height over the entire length of 
the aquifer is known at time 𝑡 = 0 (initial condition) and that the flow of groundwater through the 
ends 𝑥 = 0 and 𝑥 = 𝐿 are given values (boundary conditions). Therefore we can imagine that the 
hydraulic height is determined for 𝑥 ∈ (0, 𝐿) and 𝑡 > 0. The conditions imposed on the ends are often 
of the form:  

 ℎ(0, 𝑡) = 0 or, 
𝜕ℎ(0,𝑡)

𝑥
= 0 or 

𝜕ℎ(0,𝑡)

𝑥
= 0 = 𝑎ℎ(0, 𝑡)  

 

 ℎ(𝐿, 𝑡) = 0 or, 
𝜕ℎ(𝐿,𝑡)

𝑥
= 0 or 

𝜕ℎ(𝐿,𝑡)

𝑥
= 0 = −𝑎ℎ(𝐿, 𝑡)  

 

Where 𝑎 > 0 is also a physical constant. Let we find a solution h on following typical problem:  

1 Find ℎ such that: 

 

 
𝜕ℎ(𝑥,𝑡)

𝜕𝑡
= 𝑘(

𝜕2

𝜕𝑥2
ℎ(𝑥, 𝑡))𝑝𝑜𝑢𝑟 0 < 𝑥 < 𝐿 𝑎𝑛𝑑 𝑡 > 0, (4.2) 

 

 

 ℎ(0, 𝑡) = 0 𝑒𝑡 
𝜕

𝜕𝑥
ℎ(𝐿, 𝑡) = 0, 𝑓𝑜𝑟 𝑡 > 0 (4.3) 

 

 

 ℎ(𝑥, 0) = 𝜑(𝑥), 𝑓𝑜𝑟 0 < 𝑥 < 𝐿 (4.4) 
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where 𝜑: [0, 𝐿] → 𝑅 is the initial distribution of hydraulic height, assumed to be known. It would be 
reasonable to assume that 𝜑 also meets the conditions imposed at the ends of the aquifer. They are 
compatibility conditions: 

 

 𝜑(0) =
𝜕𝜑

𝜕𝑥
(𝐿) = 0 (4.5) 

 

The variable separation method for the problem can be presented in the following two steps:   

  • step 1: we are looking for solutions of problem (2) and (3) (Separation of variables) which are of 
the form:  

  

 ℎ(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡), 𝑏𝑢𝑡 ℎ ≇ 0 (4.6) 

 

  

 • step 2: Overlay, ie; we seek to find a sum of solutions of the form 6 that satisfies condition 4. Note 
that such a sum still checks (2) and (3).  

 (1) A function of the form (6) is a solution of the equation (2) if 𝑓 ∈ 𝐶2((0, 𝐿)), 𝑔 ∈ 𝐶1((0,∞)) and 

 

 𝑓(𝑥)𝑔′(𝑡) = 𝑘𝑓′′(𝑥)𝑔(𝑡) 𝑝𝑜𝑢𝑟 0 < 𝑥 < 𝐿 𝑎𝑛𝑑 𝑡 > 0. (4.7) 

 

At the level where ℎ(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡) ≠ 0, this is written as follows: 

 

 
𝑔′(𝑡)

𝑔(𝑡)
= 𝑘

𝑓′′(𝑥)

𝑓(𝑥)
 (4.8) 

 

And therefore there is a constant 𝜆 ∈ ℝ such that: 

 

 
𝑔′(𝑡)

𝑔(𝑡)
= 𝑘

𝑓′′(𝑥)

𝑓(𝑥)
= 𝜆 (4.9) 

 

For all points (𝑥, 𝑡) ∈ (0, 𝐿)(0,∞) such as ℎ(𝑥, 𝑡) ≠ 0. There is at least one point 𝑦 ∈ (0, 𝐿) such as 
𝑓(𝑦) ≠ 0. Sine 𝑔 ≇ 0, there is an interval (𝑡1, 𝑡2) ⊂ (0,∞) such as 𝑔(𝑡) ≠ 0 for all 𝑡 ∈ (𝑡1, 𝑡2) and 
therefore 𝑢(𝑦, 𝑡) ≠ 0 for these values of 𝑡. In particular,  
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 𝑔′(𝑡) = 𝜆(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ (𝑡1, 𝑡2) (4.10) 

  

Which implies that there is a constant 𝐴 ≠ 0 such as 𝑔(𝑡) = 𝐴𝑒𝜆𝑡for all 𝑡 ∈ (𝑡1, 𝑡2).The continuity of 

𝑔 on (0,∞) means that 𝑔(𝑡1) = 𝐴𝑒
𝜆𝑡1 ≠ 0 and that 𝑔(𝑡2) = 𝐴𝑒

𝜆𝑡2 ≠ 0 .We can easily deduce that 
𝑔(𝑡) ≠ 0 on all (0.∞) and that: 

 

 𝑔(𝑡) = 𝐴𝑒𝜆𝑡1  𝑝𝑜𝑢𝑟 𝑡𝑜𝑢𝑡 𝑡 > 0. (4.11) 

On the other hand, condition (3) becomes: 

 

 𝑓(0)𝑔(𝑡) = 𝑓′(𝐿)𝑔(𝑡) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0. (4.12) 

 

So we have to impose that: 

 

 𝑓(0) = 𝑓′(𝐿) = 0 

we then see to satisfy condition (3) if ℎ ≇ 0. the function 𝑓 must be a non-trivial solution, i.e. 𝑓 ≇ 0, 
of the boundary problem: 

 

 𝑓′′(𝑥) =
𝜆

𝑘
𝑓(𝑥) 𝑓𝑜𝑟 ≤ 𝑥 ≤ 𝐿, 𝑎𝑛𝑑 𝑓(0) = 𝑓′(𝐿) = 0 (4.13) 

 

We will see that this is only possible for certain very particular values of the constant, called 
eigenvalues of the boundary problem (13). Let us calculate all the solutions of (13). The general 
solution to the differential equation is 

 

 𝑓(𝑥) =

(

 
 
𝑃𝑒

−√
𝜆

𝑘
𝑥
+ 𝑄𝑒

√
𝜆

𝑘
𝑥

𝑠𝑖 𝜆 > 0
𝑃 + 𝑄𝑥 𝑠𝑖 𝜆 = 0

𝑃 𝑐𝑜𝑠√
|𝜆|

𝑘
𝑥 + 𝑄 𝑠𝑖𝑛√

|𝜆|

𝑘
𝑥 𝑠𝑖 𝜆 < 0

 (4.14) 

 

Where 𝑃 and 𝑄 are arbitrary real constants which must be chosen so that f satisfies the boundary 
conditions. 
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Case 𝜆 > 0. The condition 𝑓(0) = 0 is satisfied if and only if 𝑃 + 𝑄 = 0, which means that 𝑓 must be 

of the form 𝑓(𝑥) = 2𝑄𝑠𝑖𝑛ℎ (√
𝜆

𝑘
x) and so 𝑓′(𝑥) = √

𝜆

𝑘
2𝑄𝑐𝑜𝑠ℎ (√

𝜆

𝑘
𝑥) .To ensure that 𝑓 satisfies the 

condition 𝑓′(𝐿) = 0, choose 𝑄 such that √
𝜆

𝑘
2𝑄𝑐𝑜𝑠ℎ (√

𝜆

𝑘
𝐿) = 0 and the only solution is to ask 𝑄 =

0 because 𝑐𝑜𝑠ℎ(𝑦) > 0 for all 𝑦 ∈ 𝑅. But if 𝑃 = 𝑄 = 0, 𝑓 ≡ 0 and therefore problem 13 admits no 
non-trivial solution when 𝜆 > 0. 

Case 𝜆 = 0. In that case, 𝑓(0) = 𝑃 and 𝑓′(𝐿) = 𝑄. So there is no non-trivial solution of (13) in this 
case either. 

Case 𝜆 < 0. The condition 𝑓(0) = 0 equals to 𝑃 = 0 and therefore 𝑓 must be of the form 𝑓(𝑥) =

𝑄𝑠𝑖𝑛√
|𝜆|

𝑘
𝑥. The condition 𝑓′(𝐿) = 0 becomes √

|𝜆|

𝑘
𝑄𝑐𝑜𝑠 (√

|𝜆|

𝑘
𝐿) = 0 and we can choose 𝑄 ≠ 0 As 

long as 𝑐𝑜𝑠 (√
|𝜆|

𝑘
𝐿) = 0. That is, problem 13 admits non-trivial solutions if and only if the constant 𝜆 

is such that 𝑐𝑜𝑠 (√
|𝜆|

𝑘
𝐿). hence: 

 

 √
|𝜆|

𝑘
𝐿 ∈ {

2𝑛+1

𝑛
𝜋: 𝑛 ∈ ℤ} 𝑎𝑛𝑑 𝜆 < 0 (4.15) 

 

We pose: 

 

 𝜆𝑛 = −𝑘(𝑛 +
1

2
)2(

𝜋

𝐿
)2 𝑓𝑜𝑟 𝑛 ∈ ℕ (4.16) 

 

we see that we obtain all the eigenvalues of problem (13). The set of all eigenvalues: 

 

 𝜎 = {𝜆𝑛: 𝑛 ∈ ℕ} (4.17) 

 

give the spectrum of the problem (12) and the function: 

 

 𝑓𝑛(𝑥) = 𝑄𝑠𝑖𝑛√
|𝜆𝑛|

𝑘
𝑥 = 𝑄𝑠𝑖𝑛

(𝑛+
1

2
)𝜋

𝐿
𝑥,𝑤ℎ𝑒𝑟𝑒 𝑄 ≠ 0 (4.18) 
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Is an eigenfunction associated with the eigenvalue 𝜆𝑛. 

Then for summary of the 1st step, Equations (2) and (3) admit non-trivial solutions of the form (6) if 
and only if 𝑓 is a eigenfunction of the boundary problem (13) and 𝑔 is of the form (11) where is the 
eigenvalue associated with 𝑓. So the solutions of problem (2)and (3) of form (6) are: 

 

 ℎ𝑛(𝑥, 𝑡) = 𝑄𝑛𝑠𝑖𝑛(√
|𝜆𝑛|

𝑘
𝑥)𝑒𝜆𝑛𝑡 (4.19) 

 

where 𝜆𝑛 ∈ 𝜎 and 𝑄𝑛 is an arbitrary real constant, not zero. 

(2) Superposition: The form of equations (2) (3) allows the superposition of solutions. We can easily 
see that: 

 

 ℎ(𝑥, 𝑡) = ∑ 𝑄𝑛𝑠𝑖𝑛
𝑚
𝑛=0 (√

|𝜆𝑛|

𝑘
𝑥)𝑒𝜆𝑛𝑡 (4.20) 

 

Is also a solution of equations (2) and (3) whatever 𝑚 ∈ ℕ and the constants 𝑄𝑛. We now try to 
choose 𝑚 and 𝑁 so that u satisfies condition (4). Which means: 

 

 𝜑(𝑥) = ∑ 𝑄𝑛𝑠𝑖𝑛
𝑚
𝑛=0 √

|𝜆𝑛|

𝑘
𝑥, 𝑝𝑜𝑢𝑟 𝑡𝑜𝑢𝑡 𝑥 ∈ (0, 𝐿) (4.21) 

 

This is possible if and only if 

 

 𝜑 ∈ 𝑒𝜈{𝑓𝑛: 𝑛 ∈ ℕ} = {∑ 𝑄𝑛
𝑚
𝑛=0 𝑓𝑛:𝑚 ∈ ℕ 𝑎𝑛𝑑 𝑄𝑛 ∈ ℝ} (4.22) 

 

Where 𝑓𝑛 is an eigenfunction given by (18). When 𝜑 =∈ 𝑒𝜈{𝑓𝑛: 𝑛 ∈ ℕ}, the coefficients 𝑄𝑛 are 
determined by the following calculation. First, note that 

 

 ∫ 𝑠𝑖𝑛
𝐿

0
(√

|𝜆𝑛|

k
𝑥)𝑠𝑖𝑛(√

|𝜆𝑗|

𝑘
𝑥)𝑑𝑥 = (

0 𝑠𝑖 𝑛 ≠ 𝑗
𝐿

2
𝑠𝑖 𝑛 ≠ 𝑗

 (4.23) 
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Admitting that 𝜑 ∈ 𝑒𝜈{𝑓𝑛: 𝑛 ∈ ℕ} and therefore that it can be expressed by (21), we multiply (21) by 

𝑠𝑖𝑛(√
|𝜆𝑗|

𝑐
 and then we integrate from 0 to 𝐿. We find that: 

 

 ∫ 𝜑(𝑥)
𝐿

0
𝑠𝑖𝑛 (√

|𝜆𝑗|

𝑘
𝑥)𝑑𝑥 = ∫ ∑ 𝑠𝑖𝑛𝑚

𝑛=0
𝐿

0
(√

|𝜆𝑛|

𝑘
𝑥)𝑠𝑖𝑛(√

|𝜆𝑗|

𝑘
𝑥)𝑑𝑥 (4.24) 

 

 

 = ∑ 𝑄 ∫ 𝑠𝑖𝑛
𝐿

0
𝑚
𝑛=0 (√

|𝜆𝑛|

𝑘
𝑥)𝑠𝑖𝑛(√

|𝜆𝑗|

𝑘
𝑥)𝑑𝑥 (4.25) 

  

 = 𝑄𝑗
𝐿

2
 𝑠𝑖 0 ≤ 𝑗 ≤ 𝑚 (4.26) 

 

So 

 

 𝑄𝑗 =
2

𝐿
∫ 𝜑(𝑥)
𝐿

0
𝑠𝑖𝑛(√

|𝜆𝑗|

𝑘
𝑥)𝑑𝑥, 𝑖𝑓 0 ≤ 𝑗 ≤ 𝑚 (4.27) 

 

while 𝑄𝑘 = 0 for all 𝑘 > 𝑚. i.e., if 𝜑 ∈ 𝑒𝜐{𝑓𝑛: 𝑛 ∈ ℕ} so: 

 

 𝜑(𝑥) = ∑ 𝑄𝑛
∞
𝑛=0 𝑠𝑖𝑛(√

|𝜆𝑛|

𝑘
𝑥)𝑑𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ (0, 𝐿), 𝑤ℎ𝑒𝑟𝑒 (4.28) 

 

 

 𝑄𝑛 =
2

𝐿
∫ 𝜑(𝑥)
𝐿

0
𝑠𝑖𝑛(√

|𝜆𝑛|

𝑘
𝑥)𝑑𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ (4.29) 

 

Because there is 𝑚 ∈ 𝑁 such as 𝜑(𝑥)𝑠𝑖𝑛(√
|𝜆𝑗|

𝑐
𝑥)𝑑𝑥 = 0 for all 𝑛 > 𝑚. 

The method of separating variables solves problem (2), (3) and (4) for functions 𝜑 ∈ 𝑒𝜈{𝑓𝑛: 𝑛 ∈ ℕ} 
where 𝑓𝑛 is a eigenfunction of the boundary problem (13). the solution obtained is 



 

49 | V 1 6 I 0 2  
 

 

 ℎ(𝑥, 𝑡) = ∑ 𝑠𝑖𝑛∞
𝑛=0 ([(

|𝜆𝑛|

𝑘
)
1/2
𝑥])𝑄𝑛𝑒

𝜆𝑛𝑡 (4.30) 

 

Since 𝜆𝑛 = −𝑘(𝑛 +
1

2
)2 (

𝜋

𝐿
)
2

, the equation can be written in this formula: 

 

 ℎ(𝑥, 𝑡) = ∑ 𝑠𝑖𝑛∞
𝑛=0 (𝛼𝜋𝑥)𝑄𝑛𝑒

−𝑘[𝛼𝜋]2𝑡 

Where 𝛼 =
(2𝑛+1)

2𝐿
, and the 𝑄𝑛is: 

 

 𝑄𝑛 =
2

𝐿
∫ 𝑠𝑖𝑛
𝐿

0
([(𝛽)1/2𝑥])𝜑(𝑥)𝑑𝑥, ∀𝑛 ∈ ℕ (4.31) 

 

Where 𝛽 =
|𝜆𝑛|

𝑘
, 𝑄𝑛also can be written : 

 

 𝑄𝑛 =
2

𝐿
∫ 𝑠𝑖𝑛
𝐿

0
(𝛼𝜋𝑥)𝜑(𝑥)𝑑𝑥 (4.32) 

 

The sum in (30) is over for everything 𝜑 ∈ 𝑒𝜈{𝑓𝑛: 𝑛 ∈ ℕ}.  

Remark 2. Note that all functions 𝜑 ∈ 𝑒𝜈{𝑓𝑛: 𝑛 ∈ ℕ} are infinitely differentiable on [0, 𝐿] and check 
the compatibility conditions (5). Solution (30) is infinitely differentiable over [0, 𝐿][0, 𝑖𝑛𝑓) because it 
is the sum of a finite number of functions of this kind. Given a function 𝜑 which is infinitely 
differentiable on [0, 𝐿], we can determine whether or not it belongs 𝜑 ∈ 𝑒𝜈{𝑓𝑛: 𝑛 ∈ ℕ} by calculating 
the integrals (31). So 𝜑 ∈ 𝑒𝜈{𝑓𝑛: 𝑛 ∈ ℕ} if and only if all except a finite number of these integrals are 
zero. These same calculations give the coefficients in solution (30).  

 

5  Simulation of solution 
Consider the case of a 1𝐷 flow problem on an unconfined aquifer that a river and a lake run parallel 
to each other (figure 2) with 𝐿 = 500𝑚 apart. They fully penetrate aquifer with a hydraulic 
conductivity 𝐾 = 10 𝑚/𝑑𝑎𝑦, and specific yield 𝑆𝑠 = 30%. Let us run the groundwater head solution 
in different boundary conditions cases, and as we change the hydraulic diffusivity (𝑘) in time and 
space (example 1, example 2, example 3, example 4). In order to demonstrates the feasibility of the 
analytical solution given by method of separation of variable, we are compared it by a two numerical 
profile simulated using the CrankNicholson implicite (5.1) method and the Forward Time Centered 
Space method (𝑒𝑞5.2). 
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This method consists in replacing the second derivative 
𝜕2ℎ

𝜕𝑥2
 in the equation (4.1) by the average of its 

discrete representations at times 𝑛 and 𝑛 + 1. 

 

 [
𝜕2ℎ

𝜕𝑥2
]
𝑖

𝑛+1

=
1

ℎ2
[
1

2
(ℎ𝑖+1
𝑛+1 − 2ℎ𝑖

𝑛+1 + ℎ𝑖−1
𝑛+1) +

1

2
(ℎ𝑖+1
𝑛 − 2ℎ𝑖

𝑛 + ℎ𝑖−1
𝑛 )] (5.1) 

 

And for the Forward Time Centered Space (FTCS) or forward/backward space method is an implicit 
single stage finite difference method that can used for numerically solving the heat equation and 
similar parabolic partial differential equations. This scheme is unconditionally stable. then the 
equation (4.1) can be represented by the flowing scheme: 

 

 ℎ𝑖
𝑛+1 = ℎ𝑖

𝑛 + 𝛼(ℎ𝑖+1
𝑛 − 2ℎ𝑖

𝑛 + ℎ𝑖−1
𝑛 ) (5.2) 

 

With 𝛼 =
𝑘Δ𝑡

Δ𝑥2
 

 

   

 

Figure  2: Groundwater flow conceptual model on unconfined, horizontal aquifer with different 
types of boundary conditions  
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Exemple 1: 

This example corresponds to the following mathematical problem with nonhomogeneous Dirichlet 
boundary conditions (Figure .2A)  

  

 

(

 
 
𝑘(

𝜕2

𝜕𝑥2
ℎ(𝑥, 𝑡)) =

𝜕ℎ(𝑥,𝑡)

𝜕𝑡
, 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑡 ≤ 𝑇

ℎ(0, 𝑡) = 2, ℎ(𝐿, 𝑡) = 4.5 , 0 ≤ 𝑡 ≤ 𝑇

ℎ(𝑥, 0) = (2 +
𝑥3

5×107
) , 0 ≤ 𝑥 ≤ 𝐿

 (5.3) 

 

Following the solution (4.30) derived in section 4, the solution of problem (5.3) is show in figure 3, 
the figure provides a good match solution at different time 𝑡 = 10, 𝑡 = 20, 𝑡 = 30, 𝑡 = 40. 

 

   

  

Figure  3: (a): Comparison of the evaluated exact solution correspond of example 𝟏 and figure 𝟐A 
with implicit numerical methods of CrankNicholson and FTCS; (b) evaluated exact solution in 

various time. 

  

 

Exemple  2: 
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This example corresponds to the following mathematical problem with a Dirichlet boundary 
conditions type in the lake side, and a Neumann boundary type conditions in the river limit side (Figure 
.2B) :  

  

 

(

 
 
𝑘(

𝜕2

𝜕𝑥2
ℎ(𝑥, 𝑡)) =

𝜕ℎ(𝑥,𝑡)

𝜕𝑡
, 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑡 ≤ 𝑇

ℎ(0, 𝑡) = 2,
𝜕

𝜕𝑥
ℎ(𝐿, 𝑡) = 9.10−3 , 0 ≤ 𝑡 ≤ 𝑇

ℎ(𝑥, 0) = (2 +
𝑥3

5×107
) , 0 ≤ 𝑥 ≤ 𝐿

 (5.4) 

 

Following the solution (4.30) derived in section 4, the solution of problem (5.4) is show in figure 4, 
the figure provides a good match solution at different time 𝑡 = 10, 𝑡 = 20, 𝑡 = 30, 𝑡 = 40. 

 

 

 

 

Figure  4: (a): Comparison of the evaluated exact solution correspond of example 𝟐 and figure 𝟐B 
with implicit numerical methods of CrankNicholson and FTCS; (b) evaluated exact solution in 

various time. 

  

 

 Exemple 3: 
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This example corresponds to the following mathematical problem with nonhomogeneous Neumann 
boundary conditions (Figure 2C) :  

  

 

(

 
 
𝑘(

𝜕2

𝜕𝑥2
ℎ(𝑥, 𝑡)) =

𝜕ℎ(𝑥,𝑡)

𝜕𝑡
, 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑡 ≤ 𝑇

𝜕

𝜕𝑥
ℎ(0, 𝑡) = 0.0001,

𝜕

𝜕𝑥
ℎ(𝐿, 𝑡) = 0.009 , 0 ≤ 𝑡 ≤ 𝑇

ℎ(𝑥, 0) = (2 +
𝑥3

5×107
) , 0 ≤ 𝑡 ≤ 𝐿

 (5.5) 

 

Following the solution (4.30) derived in section 4, the solution of problem (5.5) is show in figure 5, 
the figure provides a good match solution at different time 𝑡 = 10, 𝑡 = 20, 𝑡 = 30, 𝑡 = 40. 

 

   

 

 

Figure  5: (a): Comparison of the evaluated exact solution correspond of example 𝟑 and figure 𝟐C 
with implicit numerical methods of CrankNicholson and FTCS; (b) evaluated exact solution in 

various time. 

  

 

 

Exemple 4: 
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This example corresponds to the following mathematical problem with a Neumann boundary 
conditions type in the lake limit side and a Mixed boundary conditions type in the river limit side 
(Figure 2D) :  

  

 

(

 
 
𝑘(

𝜕2

𝜕𝑥2
ℎ(𝑥, 𝑡)) =

𝜕ℎ(𝑥,𝑡)

𝜕𝑡
, 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑡 ≤ 𝑇

𝜕

𝜕𝑥
ℎ(0, 𝑡) = 10−4, ℎ(𝐿, 𝑡) +

𝜕

𝜕𝑥
ℎ(𝐿, 𝑡) = 4.5 , 0 ≤ 𝑡 ≤ 𝑇

ℎ(𝑥, 0) = ℎ(𝑥, 0) = (2 +
𝑥3

5×107
) , 0 ≤ 𝑥 ≤ 𝐿

 (5.6) 

Following the solution (4.30) derived in section 4, the solution of problem (5.6) is show in figure 6, 
the figure provides a good match solution at different time 𝑡 = 10, 𝑡 = 20, 𝑡 = 30, 𝑡 = 40. 

 

   

 

 

Figure  6: (a): Comparison of the evaluated exact solution correspond of example 𝟒 and figure 𝟐D 
with implicit numerical methods of CrankNicholson and FTCS; (b) evaluated exact solution in 

various time. 

6  Discussion 
Analytical solution for the prediction of the one-dimensional (1𝐷) time-dependent groundwater flow 
profile in an unconfined system evaluated for a setting corresponding case to 𝐿 = 500𝑚, 𝐾 = 10,𝐾 =
50, 𝐾 = 100, 𝐾 = 400𝑚/𝑑, 𝑘 = 31818𝑚2/𝑑 , 𝑆𝑦 = 22%, the solution use a uniform domain in 

different time step length. 
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The 𝐹𝑖𝑔𝑢𝑟𝑒. 3 to 𝐹𝑖𝑔𝑢𝑟𝑒. 6 depicts results obtained at 4 different limit conditions according to 
equation (4.30). in the 4 cases of simulation, the results showing note that the solution that was 
produced by the method of separation of the variable is an acceptable solution, as well as that in all 
the four cases in which the solution was applied, it was found that there is a match between the 
solution produced by the separation of variable method and with the other two numerical methods 
of CrankNicholson and FTCS.  

The module can simulate the same solutions that were given by the CrankNicholson and FTCS 
methods. It can then be concluded that the solution is given by the separation of the variable method 
when applied inhomogeneous medium, taking into account the normal boundary conditions, the 
solution presented can reproduce the behavior of the groundwater in a very acceptable way. 

7  Conclusion 
In this work, we introduce an analytical solution for a homogenous porous media. Using the method 
of separation of variables, this analytical solution accurately reproduces the results from the finite 
difference numerical method given by CrankNicholson and FTCS. We test the proposed solution in 
four examples, considering not only the constant head (Dirichlet conditions) boundary condition but 
also a specific flux (condition de Neumann) and mixed condition (Cauchy condition) . We compared 
the analytical method and therefore the two numerical methods of CrankNicholson and FTCS. using a 
sand-gravel medium characteristics of permeability, hydraulic dispersivity and specific yield. The 
analytical solution and therefore the CrankNicholson and FTCS numerical method are in good 
agreement within the four example cases. The proposed method is valid for the overall homogenous 
horizontal unconfined aquifer, including not only fluid flow in porous media but also another physical 
problems.  
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