NOTE ON DIFFERENT TYPES OF PRIMARY IDEALS IN NEAR-RINGS

WAHEED AHMAD KHAN ${ }^{1, *}$, MUHAMMAD. ASHRAF ${ }^{2}$, ADNAN MUHAMMAD ${ }^{\mathbf{3}}$, ABDELGHANI TAOUTI ${ }^{4}$
${ }^{1}$ Department of Mathematics, University of Education Lahore, Attock Campus, Pakistan
${ }^{2,3}$ Department of Mathematics, Wah Engineering College University of Wah, Wah Cantt, Pakistan
${ }^{4}$ ETS-Maths and NS Engineering Division, HCT, University City P.O. Box 7947, Sharjah, United Arab Emirates

Highlights

- This paper focuses on ideal theory of near-rings.
- Classical algebraic substructures of near-rings are introduced in this study.
- Highly useful results are obtained about the characterizations of near-rings.

DOI: 10.5281/zenodo. 6553311

Abstract

We introduce the notions of 0-(1-2)-primary and almost primary ideals which are the generalizations of $0-(1-2)$-prime ideals in near-rings. Moreover, some characterizations are also obtained and are demonstrated with suitable examples.

Key words: Near-rings, 0-primary ideals, 1-primary ideals 2-primary ideals, almost primary ideals

1 Introduction and Preliminaries

An algebraic system N with two binary operation " + " and "." is said to be a (right) near-ring, if it is a group (not necessarily abelian) under addition, semigroup under multiplication and N satisfies (right) distributive law i.e., for any $x, y, z \in N ;(x+y) \cdot z=(x \cdot z)+(y \cdot z)$ [7]. Similarly, a left near-ring can be defined by replacing the right distributive law with left distributive law. We call a (left) near-ring N is a zero-symmetric, if $0 \cdot n=0$ for all $n \in N$. Similarly, an element x of (left) near-ring N is distributive, if $(a+b) \cdot x=a \cdot x+b \cdot x$ for all $a, b \in N$, and if its all the elements of N satisfies right distributive property we say that N is distributive near-ring. The near-ring N is called a distributively generated (d.g), if it contains a multiplicative sub-semigroup of distributive elements which generates additive group ($N,+$). Every distributively generated near-rings are zero-symmetric near-rings. We refer [7] for the fundamental concepts and notions for near-rings. Let N and N^{\prime} be two near-rings and ${ }_{N} \Gamma$ and ${ }_{N} \Gamma^{\prime}$ be two N-groups, then $\phi: N \rightarrow N^{\prime}$ satisfying $\phi\left(n_{1}+n_{2}\right)=\phi\left(n_{1}\right)+\phi\left(n_{2}\right) ; \phi\left(n_{1} n_{2}\right)=$
$\phi\left(n_{1}\right) \phi\left(n_{2}\right)$; and a map $h:{ }_{N} \Gamma \rightarrow{ }_{N} \Gamma^{\prime}$ satisfying $h(\gamma+\delta)=h(\gamma)+h(\delta) ; h(n \gamma)=n h(\gamma)$ are said to be near-ring homomorphism and N-homomorphism, respectively. We call a subset I of a near-ring N is an ideal if: (i) $(I,+$) is a normal subgroup of a $(N,+$), (ii) For each $n \in$ $N, i \in I$, ni $\in I$ i.e., $N I \subseteq I$, and (iii) $\left(n_{1}+i\right) n_{2}-n_{1} n_{2} \in I$ for each $n_{1}, n_{2} \in N$ and $i \in I$. But A. Frohlich [4] showed that for $d . g$ - near-rings the third condition is equivalent to in $\in I$ i.e., $I N \subseteq I$. A proper ideal P of a near-ring N is said to be a prime ideal if for ideals A and B of $N, A B \subseteq P \Rightarrow A \subseteq P$ or $B \subseteq P$. Different types of prime ideals have been introduced in the literature (see [5], [2]\&[8]). Almost prime ideals in near-rings have been endorsed by B . Elavarasan (see [3]). A proper ideal P of a near-ring N is said to be an almost prime if for any ideals A and B of N such that $A B \subseteq P$ and $A B \nsubseteq P^{2}$, we have $A \subseteq P$ or $B \subseteq P$ [3, page 47]. The author established few relationships between almost prime and prime ideals as well [3]. Notions of 0-(1-2)-prime ideals have been introduced in ([2], [5] \& [8]). Following [5], an ideal P of near-ring is said to be a 0 -prime ideal, if for any two ideals $I_{1}, I_{2} \subseteq N$ such that $I_{1} I_{2} \subseteq P$ implies $I_{1} \subseteq P$ or $I_{2} \subseteq P$ [5]. Subsequently, Ramakotaiah and Rao [8] introduced the concepts of 0 -prime, 1-prime and 2-prime ideals of a near-rings. Furthermore, G. Birkenmeier et al. [2] discussed the connections between prime ideals and type one prime ideals in nearrings. Following [2], an ideal I is said to be a type-zero or simply a prime ideal if A and B are ideals of $N, A B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$. Further to this, an ideal I of a near-ring is of type1(or 1-prime) if $x, y \in N, x N y \in I$ then $x \in I$ or $y \in I$. Similarly, an ideal P of a near-ring N is called 2-prime if for any two subgroup K_{1}, K_{2} of $(N,+)$ such that $K_{1} K_{2} \subseteq P$ implies that $K_{1} \subseteq P$ or $K_{2} \subseteq P$. It is well-known that 2 -prime $\Rightarrow 1$-prime $\Rightarrow 0$-prime, but the converse doesn't exist in any of the implication. Recently, P-ideals and their P-properties in near rings have been introduced in [1]. On the other hand,few concepts of nearrings have been shifted towards seminearrings in [6].

In this note, we introduce the notions of 0-(1-2)-primary ideals and almost primary ideals in a near-rings. We investigate that 0 -prime ideal is always 0 -primary but converse is not true. We also establish that 2-primary \Rightarrow 1-primary $\Rightarrow 0$-primary ideals but the converse does not hold true in any of implication. Furthermore, several characterizations are obtained and supported by suitable examples.

2 Primary ideals in near-rings

In this section, we introduce and discuss different types of primary ideals of near-rings. We also investigate some relationships among them.

Definition 1. A proper ideal P of N is called 0-primary if A, B are any two ideal of N such that $A B \subseteq P$ implies that $A \subseteq P$ or $B^{n} \subseteq P$ for some $n \in \mathbb{Z}^{+}$.

Example 1 Suppose that $N=\{0,1,2,3,4,5,6,7\}$ be a right near-ring with addition and multiplication defined in the tables set 1 .

ISSN 1533-9211

Tables set 1

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	5	4	7	6
2	2	3	0	1	6	7	4	5
3	3	2	1	0	7	6	5	4
4	4	5	6	7	0	1	2	3
5	5	4	7	6	1	0	3	2
6	6	7	4	5	2	3	0	1
7	7	6	5	4	3	2	1	0

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	5	4	7	6
2	2	3	0	1	6	7	4	5
3	3	2	1	0	7	6	5	4
4	4	5	6	7	0	1	2	3
5	5	4	7	6	1	0	3	2
6	6	7	4	5	2	3	0	1
7	7	6	5	4	3	2	1	0

Here $P=\{0,2\}, I_{1}=\{0,1,2,3\}$ and $I_{2}=\{0,1\}$ are ideals of N. Also $I_{1} I_{2}=\{0\} \subseteq P$ implies $I_{2}^{2} \subseteq P \Rightarrow P$ is a 0 -primary ideal of near-ring N, however P is not a 0 -prime ideal.

Proposition 1 Let I be an ideal of a zero-symmetric near-ring N. Then I is a 0 -primary ideal if and only if every zero-divisor in N / I is a nilpotent.

Proof \Rightarrow) Let I be a 0 -primary ideal of a near-ring N and consider N / I is a non-trivial. Let $n+I \in N / I$ be a zero-divisor and $n_{1} \in N / I$. Consider $n_{1} n+I=\left(n_{1}+I\right)(n+I)=0+I \Rightarrow$ $n_{1} n \in I, n_{1} \notin I \Rightarrow n^{k} \in I$ for some $k \in \mathbb{Z}^{+}$. Hence $(n+I)^{k}=n^{k}+I=0+I \Rightarrow n+I$ is nilpotent. \Leftarrow) Suppose N / I is non-trivial and every nonzero zero-divisor in N / I is nilpotent. Since $I \neq N$, let $n_{1}, n_{2} \in N$ such that $n_{1} . n_{2} \in I$, then either $n_{1} \in I$ or $n_{1} \notin I$, suppose $n_{1} \notin I$ then consider $\left(n_{2}+I\right)\left(n_{1}+I\right)=n_{2} \cdot n_{1}+I=0+I \Rightarrow n_{2} \cdot n_{1}=0$, so $n_{2}+I$ is a zero-divisor and by assumption $\left(n_{2}+I\right)^{k}=n_{2}^{k}+I=0+I \Rightarrow n_{2}^{k} \in I$, hence I is a primary (0 -primary) ideal.

Example 2 Let $N=\{0, a, b, c\}$ be a zero-symmetric near-ring under the addition and multiplication defined in the tables set 2 .

ISSN 1533-9211

Tables set 2

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

\cdot	0	a	b	c
0	0	0	0	0
a	0	a	0	a
b	0	0	0	0
c	0	a	0	a

Clearly, $P=\{0, a\}$ is 0 -primary ideal and the quotient $N / P=\{0+P, b+P\}$ along with operations given in tables set 3 .

Tables set 3

$$
\begin{array}{|l|l|l|}
\hline+ & 0+P & b+P \\
\hline 0+P & 0+P & b+P \\
\hline b+P & b+P & 0+P \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|}
\hline \cdot & 0+P & b+P \\
\hline 0+P & 0+P & 0+P \\
\hline b+P & 0+P & 0+P \\
\hline
\end{array}
$$

Here the zero divisors of N / P are $0+P$ and $b+P$, which are nilpotents. Intersection of any two 0 -primary ideals of a near-ring need not be a 0 -primary ideal, we provide an example.

Example 3 Suppose $N=\{0, a, b, c\}$ be a commutative near-ring with addition and multiplication defined in the tables set 4 .

Tables set 4

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

\cdot	0	a	b	c
0	0	0	0	0
a	0	a	0	a
b	0	0	0	0
c	0	a	0	a

ISSN 1533-9211

Let us consider 0-primary ideals $P_{1}=\{0, a\}$ and $P_{2}=\{0, b\}$ of a near-ring N. But $P_{1} \cap P_{2}=$ $\{0\}$ is not a 0 -primary ideal of N.

Proposition 2 Every 0 -prime ideal in a near-ring N is a 0 -primary ideal of N.
Proof Let N be a near-ring and P be a 0 -prime ideal then for all $x, y \in N, x y \in P \Rightarrow x \in P$ or $y \in P$, while considering $n=1$ the result follows.

Remark 1 Every maximal ideal in near-ring is 0-prime and hence a 0 -primary ideal \Rightarrow a maximal ideal is a 0 -primary.

Definition 2. An ideal I of a near-ring N is a semi-primary ideal if for any ideal J of $N, J^{2} \subseteq I$ implies that $J \subseteq I$.
It is well known that in any near-ring the intersection of any prime ideals is a semi-prime ideal. We also know that a semi-prime ideal of a near-ring N is the intersection of minimal prime ideals of I in N such that the ideal I can be written as the intersection of all prime ideals containing I. However, the intersection of two primary ideals need not be a semi-primary ideal for instance see in example3 i.e., $I=\{0\}$ is the intersection of primary ideals $\{0, a\}$ and $\{0, b\}$ but is not a semi-primary i.e., $P_{2}^{2} \subseteq\{0\}=I$, but $P_{2} \nsubseteq I$.

Definition 3 An ideal P of near-ring N is said to be 1-primary ideal if for any right ideals A, B of $N, A B \subseteq P \Rightarrow A \subseteq P$ or $B^{n} \subseteq P$ where $n \in \mathbb{Z}^{+}$.

Example 4 Let $N=\{0,1,2,3,4,5,6,7\}$ be a right near-ring with addition and multiplication defined in the tables set 5 .

Tables set 5

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	0	5	5	6	7
2	2	3	0	1	6	6	7	4
3	3	0	1	2	7	4	4	5
4	4	7	6	5	0	0	3	2

		123		5	67
		00			
0		101	0	1	10
	02	202	0	2	20
	03	303	0	3	30
	44	444	4		44
	45	545	4	5	54
	46	646	4	6	64
		747		7	74

ISSN 1533-9211

Let $A=\{0,1,2,3\}$ and $B=\{0,2\}$ be the two right ideals of N. Let $P=\{0,4\}$ be an ideal of Nthen the product $A B=\{0\} \subseteq P$ implies $B^{2} \subseteq P$. Hence P is a 1-primary ideal of near-ring N.

Definition 4. An ideal P of near-ring N is called 2-primary ideal if A, B are any two N subgroups such that $A B \subseteq P$ implies that $A \subseteq P$ or $B^{n} \subseteq P$ for some $n \in \mathbb{Z}^{+}$.

Proposition 3 Let N be a near-ring. Then the following statements are equivalent.
(i) P is a 2-primary ideal of N.
(ii) If A is an N-subgroup and B is an ideal of N then $A B \subseteq P$ implies $A \subseteq P$ or $B^{k} \subseteq P$ where $n \in \mathbb{Z}^{+}$.

Proof. (i) \Rightarrow (ii) If P is 2-primary ideal and B is an N-subgroup then (ii) is straightaway.
(ii) $\Rightarrow(i)$ Let A and B be two N-subgroups of N such that $A B \subseteq P$. Let $A \nsubseteq P$ and assume $B^{k} \subseteq(P: A)=\{n \in N: A n \subseteq P\}=S$. Since S is an ideal of N, we have if $r \in S$ and $n, n_{1} \in N$ then for all $a \in A, a(-n+r+n)=-a n+a r+a n \in P$, as P is an ideal thus $a\left[(n+r) n_{1}-\right.$ $\left.n n_{1}\right]=(a n+a r) n_{1}-a n n_{1} \in P$ which implies $A n r \subseteq A r \subseteq P$. Hence $A S \subseteq P$ but we have assumed that $A \nsubseteq P$ which implies $S \subseteq P$ so $B^{k} \subseteq S \subseteq P$.
Proposition 4 Let P be a 2-primary ideal and A_{1}, \ldots, A_{k} are N-subgroups. Then $A_{1} A_{2} \ldots A_{k} \subseteq$ P implies $A_{i}^{n} \subseteq p$ for some $i \in\{1, \ldots, k\}$ and $n \in \mathbb{Z}^{+}$.

Proof. Let $A_{1} A_{2} \ldots A_{k} \subseteq P$ and $A_{1} \nsubseteq P$ such that $\left(A_{2}, \ldots, A_{k}\right)^{n} \subseteq\left(P: A_{1}\right)$. Thus $A_{1} .\left(P: A_{1}\right) \subseteq$ P which implies $\left(P: A_{1}\right) \subseteq P$ given that P is 2-primary ideal. By using proposition3 (ii), we get $\left(A_{2}, \ldots\right.$,
$\left.A_{k}\right)^{n} \subseteq P$. Similarly, we can repeat procedure for $A_{2} \nsubseteq P$ and eventually $A_{i}^{n} \subseteq P$ for some $i \in$ $\{1, . ., k\}$.
Definition 5. An ideal P of a near-ring N is said to be 3-primary ideal if for $a, b \in N$ such that $a N b \subseteq P \Rightarrow a \subseteq P$ or $b^{n} \subseteq P$ for $n \in \mathbb{Z}^{+}$.

Example 5 Let $N=\{0,1,2,3,4,5,6,7\}$ be a (right) near-ring under the addition and multiplication defined in tables set 6 .

ISSN 1533-9211

Tables set 6

+	0	1	2	3	4	5	6
0	7						
0	0	1	2	3	4	5	6
1	2	3	0	1	7	7	6

Let $P=\{0,7\}$ is a left ideal of N which is 3-primary ideal.
Definition 6. A proper ideal P of near-ring is called (completely) c-primary ideal if for $a, b \in$ N suth that $a b \in P$ implies $a \in P$ or $b^{n} \in P$ for $n \in \mathbb{Z}^{+}$.

Example 6 Let $N=\{0,1,2,3,4,5\}$ whose addition and multiplication are defined in the tables set 7.

Tables set 7

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

\cdot	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	5	1	0	5	1
2	0	4	2	0	4	2
3	0	3	3	0	3	3
4	0	2	4	0	2	4
5	0	1	5	0	1	5

ISSN 1533-9211

Clearly,$P=\{0,2,4\}$ is a c-primary ideal of Nas $1.3=0 \in P$ implies $3^{2}=0 \in P$ and $5.3=$ $0 \Rightarrow 3^{2}=0 \in P$.

Now we try to find the relationships among different types of primary ideals. Refer to example4, it is easy to verify that $P=\{0,4\}$ is a 0 -primary ideal. Thus, every 1 -primary ideal $\Rightarrow 0$-primary ideal. From example4, we have observed that an ideal $P=\{0,4\}$ is 1-primary ideal but it is not 1 -prime ideal. Similarly, from example5, we see that $P=\{0,7\}$ is 3-primary ideal but it is not 3 -prime ideal as $3 N 7=\{0\} \subseteq P$ but 3 or 7 doesn't belong to P. Similarly, in example6, $P=\{0,2,4\}$ is a c-primary ideal of N which is not a c-prime ideal, however it is easy to verify that an ideal P is simultaneously 3-primary, 2-primary, 1-primary and 0 -primary ideal. Hence we concluded that

$$
c \text { - primaryideal } \Rightarrow 3 \text { - primary } \Rightarrow 2 \text { - primary } \Rightarrow 1 \text { - primary } \Rightarrow 0 \text { - primary. }
$$

But the converse doesn't hold true in the above implication. After discussing different types of primary ideals in a near-ring now we introduce 0-(1-2)-primary near-ring.

Definition 7. A near-ring N is said to be a 0 -(1-2)-primary near-ring if $\{0\}$ is 0 -(1-2)-primary ideal of N.

We can say that a near-ring N is said to be a 0 -primary (primary) near-ring, if for any two ideals A, B of $N, A B \subseteq\{0\}$ implies $A \subseteq\{0\}$ or $B^{n} \subseteq\{0\}$. In a similar manner, we can define 1-primary and 2-primary near-rings.

Example 7 Consider the left near-ring $N=\{0,1,2,3\}$ defined in tables set 8 .

Tables set 8

		1	2	
0	0	1		
1	1	0	3	
2	2	3	0	
		2	1	

 such that $I J=\{0\}$
Let $I=\{0,1\}$ and $J=\{0,2\}$ be the two right ideals of N where $J^{2}=\{0\}$. Hence N is a 1 -primary near-ring.

Proposition 5 Each 0-prime near-ring is a 0-primary near-ring.
Proof. Immediate.
Example 8 Every integral near-rings are prime near-rings and hence primary (0-primary) nearrings.

ISSN 1533-9211

We have introduced different primary ideals now we discuss the prime radical of these ideal. Following [7, definition 2.93], if I be an ideal of a near-ring N then the intersection of all prime ideals containing I is said to be the prime radical and is denoted by $\wp(I)$ i.e., $\wp(I)=\bigcap_{P \supseteq I} P$, where P is the prime. Hence, if $n \in \wp(I) \Rightarrow \exists k \in \mathbb{N}: n^{k} \in I$. In other words, an ideal I of a near-ring N is a semiprime ideal in N iff $\wp(I)=I$. Likewise rings, we will see that if I is the $0-(1-2)$-primary ideal of a near-ring then its prime radical is the corresponding $0-(1-2)$-prime ideal.

Example 9 Refer to example1, $\{0,2\}$ is 0 -primary ideal and $\sqrt{\{0,2\}}=\{0,1,2,3\}$ which is 0 prime ideal of N.

It is easy to verify that if I is a 0 -(1-2)-primary ideal then its prime radical is a $0-(1-2)$-prime which we have already seen in example9. On the other hand, the converse doesn't hold true i.e., if the prime radical of an ideal I is $0-(1-2)$-prime then it is not necessary that I is a $0-(1-$ 2)-primary ideal.

Proposition 6 Let I be the both primary and semiprime ideal of a near-ring N. Then I is a prime ideal.
Proof. Immediate.
It is well known that an ideal I of a nearring N is said to be a completely prime (or c-prime) if $a, b \in N, a b \in I$ implies $a \in I$ or $b \in I$.

Definition 8. Let Q be a c-primary (completely primary) ideal of a nearring N such that $\sqrt{Q}=$ P, where P is a c-prime ideal of N . Then we call Q a $c P$-primary ideal.

Definition 9. Let Q be a $c P$-primary ideal of a near-ring N. For $x \in N-Q$, we have $(Q: x)=$ $\{a \in N: a x \in Q\}$.
Proposition 7 Let Q be a $c P$-primary ideal of a near-ring N and let $n \in N$. Then we have the following.
(i) If $n \in Q$, then $(Q: n)=N$.
(ii) If $n \notin Q$, then $(Q: n)$ is $c P$-primary ideal and $\sqrt{(Q: n)}=P$.
(iii) If $n \notin P$, then $(Q: n)=Q$.

Proof. Proof is omitted because it is similar to that of rings.
Remark 2 Let Q be a $c P$-primary ideal of a near-ring N such that $\sqrt{(Q: n)}$ is c-prime and $\sqrt{Q_{i}}=$ P_{i}, then it must be contained in the set $\sqrt{(Q: n)}$ where $n \in N$.
We illustrate proposition7 and remark2 in the below example.
Example 10 Refer to example1, we have $Q=\{0,2\}$ is 0-primary ideal. Then the only possible

ISSN 1533-9211

0 -prime ideal of N containing Q is the ideal $P_{1}=\{0,1,2,3\}$ and hence a prime radical of Q implies Q is a P-primary. On the other hand, let $3 \in N$ and consider $(Q: 3)=\{n \in N: 3 n \in$ $Q\}=\{0,1,2,3\}$, which is clearly a 0 -prime ideal of N. Hence $(Q: 3)$ is an associated 0 -prime ideal of a 0 -primary ideal Q. Thus, every associated prime ideal must be contained in $\sqrt{(Q: x)}$.

3 Almost primary ideal in near-ring

In this section, we introduce and discuss some generalizations of primary ideals of near-rings. We initiate with the following definition.

Definition 10. A proper ideal P of a near-ring N is said to be an almost primary ideal if for ideals I and J of $N, I \subseteq \subseteq P-P^{2}$, we have $I \subseteq P$ or $J^{n} \subseteq P$ for some $n \in \mathbb{Z}^{+}$.

Theorem 1 Let P be the proper ideal of a near-ring N. Then the followings are equivalent.
(1) P be an almost primary ideal of N.
(2) For any ideals I and J of $N,(I J) \subseteq P$ such that $(I J) \nsubseteq P^{2} \Rightarrow I \nsubseteq P^{2}$ or $J^{n} \subseteq P$.
(3) For any $i, j \in N, i \notin P$ and $j^{n} \notin P$ for some $n \in \mathbb{Z}^{+} \Rightarrow(i)(j) \subseteq P^{2}$ or $(i)(j) \nsubseteq P$.

Proof. (1) \Leftrightarrow (2) is trivial.
(1) \Leftrightarrow (3) Let P be an almost primary. Let $(i)(j) \subseteq P-P^{2}$ then $(i) \subseteq P$ or $(j)^{n} \subseteq P$ implies $i \in P$ or $j^{n} \in P$.
(2) $\Leftrightarrow(3)$ is immediate.

Example 11 Let $N=\{0,1,2,3,4,5,6,7\}$ be a right near-ring whose tables are given below.
Tables set 9

\cdot	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	0	2	2	2	0	0
3	0	3	2	1	5	4	6	7
4	0	4	2	5	4	5	6	7
5	0	6	2	4	5	4	6	7
6	0	6	0	6	0	0	0	0
7	0	7	0	7	2	2	0	0

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	0	7	6	4	5
2	2	3	0	1	5	4	7	6
3	3	0	1	2	6	7	5	4
4	4	7	5	6	2	0	1	3
5	5	6	4	7	0	2	3	1
6	6	4	7	5	1	3	0	2
7	7	5	6	4	3	1	2	0

An ideal $I=\{0,2\}$ is an almost primary ideal. However, I is not a prime ideal and also I is neither a weakly prime nor an almost prime ideal. On the other hand, $J=\{0,6\}$ is a weakly prime and almost prime but not an almost primary ideal in N.

ISSN 1533-9211

Remark 3 Every weakly prime ideal is not an almost primary ideal.
Remark 4 Every 0-primary ideals and idempotent ideals in a near-ring are almost primary ideals. But the converse doesn't hold true in all cases.

Example 12 An ideal $P=\{0,2\}$ in example 1 is an idempotent ideal and also an almost primary ideal. Now we provide an example of an almost primary ideal which is not a prime ideal in a near-ring.

Example 13 In example1 we have a prime ideal $P=\{0,1,2,3\}$ of a near-ring N. Let $S=\{4$, $5\}$ be a multiplicative closed set in N. We note that $P \cap S=\emptyset$ and also $P_{S} \cap N=\{0,1,2,3\}=$ P and $P_{S} \cap N=\{x \in N: x s \in P$, for $x \in S\}$. On the other hand, if we take an almost primary ideal $P=\{0,2\}$ of N andS $=\{4,5\}$ be a multiplicative set of N. Then $P=\{0,2\}$ is an almost primary ideal of N but not a prime ideal.
Remark 5 If P is an almost primary ideal of N and S is a multiplicative set of N with $P \cap S=$ ϕ then P_{S} is an almost primary ideal in N_{S}.
Proposition 8 Let P be a nonzero almost primary ideal of N and $\left(P^{2}: P\right) \subseteq P$ then P is primary ideal.

Proof. Let P be an almost primary ideal and $\left(P^{2}: P\right) \subseteq P$. Suppose that P is not a primary ideal of N, then there exist $x \notin P$ and $y^{n} \notin P$ such that $<x><y^{n}>\subseteq P$. If $<x><y^{n}>\nsubseteq P^{2}$ we are done and hence $\left\langle x><y^{n}>\subseteq P-P^{2}\right.$. Consider $\langle x\rangle\left(<y^{n}>+P\right) \subseteq P$. If $<x>$ $(<y>+P) \nsubseteq P^{2}$, then we have $x \in P$ or $y^{n} \in P$, a contradiction. Otherwise $<x>\left(<y^{n}>\right.$ $+P) \subseteq P^{2}$ then $<x>P \subseteq P^{2}$ implies $x \in\left(P^{2}: P\right) \subseteq P$.
Theorem 2 Let N_{1} and N_{2} be any two near-rings with identity and P be a proper ideal of N_{1}. Then P is an almost primary if and only if $\left(P \times N_{2}\right)$ is an almost primary ideal of $N_{1} \times N_{2}$.

Proof. Suppose that P be an almost primary ideal of N_{1} and let $\left(I_{1} \times J_{1}\right)$ and $\left(I_{2} \times J_{2}\right)$ be the ideals of $N_{1} \times N_{2}$ such that $\left(I_{1} \times J_{1}\right)\left(I_{2} \times J_{2}\right)^{n} \subseteq\left(P \times N_{2}\right)$ and $\left(I_{1} \times J_{1}\right)\left(I_{2} \times J_{2}\right)^{n} \nsubseteq(P \times$ $\left.N_{2}\right)^{2}$. Then $\left(I_{1} I_{2}^{n} \times J_{1} J_{2}^{n}\right) \subseteq\left(P \times N_{2}\right)$ and $\left(I_{1} I_{2}^{n} \times J_{1} J_{2}^{n}\right) \nsubseteq\left(P^{2} \times N_{2}\right)$, so $I_{1} I_{2}^{n} \subseteq P$ and $I_{1} I_{2}^{n} \nsubseteq$ P^{2} which implies $I_{1} \subseteq P$ or $I_{2}^{n} \subseteq P$. Conversely, suppose that $\left(P \times N_{2}\right)$ is an almost primary ideal of $N_{1} \times N_{2}$ and let A and B be ideals of N_{1} such that $A B \subseteq P$ and $A B \nsubseteq P^{2}$. Then $(A \times$ $\left.N_{2}\right)\left(B \times N_{2}\right) \subseteq\left(P \times N_{2}\right)$ and $\left(A \times N_{2}\right)\left(B \times N_{2}\right) \nsubseteq\left(P \times N_{2}\right)^{2}$. By assumption, we have $(A \times$ $\left.N_{2}\right) \subseteq\left(P \times N_{2}\right)$ or $\left(B \times N_{2}\right) \subseteq\left(P \times N_{2}\right) . S o A \subseteq P$ or $B^{n} \subseteq P$.

Proposition 9 If P be an almost primary ideal of a near-ring N such that an ideal $I \subseteq P$, then $\frac{P}{I}$ is an almost primary ideal of $\frac{N}{I}$.
Proof. Let $(a+I)(b+I) \in \frac{P}{I}-\left(\frac{P}{I}\right)^{2}$ and $(a+I) \notin \frac{P}{I}$. Then $a b \in P, a b+I \notin\left(\frac{P}{I}\right)^{2}$ and $a \notin$ P. At the present, if $a b \in P^{2}$ then for some $n \in \mathbb{Z}^{+}$, we have $a b=\sum_{i=1}^{n} a_{i}$, b_{i}, where $a_{i} b_{i} \in P$ for all i, and we have $a b+I=\sum_{i=1}^{n} a_{i} b_{i}+I=\sum_{i=1}^{n}\left(a_{i}+I\right)\left(b_{i}+I\right) \in \frac{P}{I} \frac{P}{I}=\left(\frac{p}{I}\right)^{2}$, a contradiction arises, so $a b \notin P^{2}$ and hence $b^{m} \in P$, for some $m \in \mathbb{Z}^{+}$, it implies $(b+I)^{m} \in$

ISSN 1533-9211
$\frac{P}{I}$. Thus $\frac{P}{I}$ is an almost primary ideal of $\frac{R}{I}$.
Example 14 In example11, $P=\{0,2\}$ is an almost primary ideal. The ideal which are subsets of P are only $\{0\}$ and P itself. According to proposition $9 \frac{P}{P}=\{0+P\}$ and $\frac{N}{P}=\{0+P, 1+P$, $4+P, 6+P\}$. For near-ring $\frac{N}{P}$, the addition and multiplication tables are given below.

Tables set 10

$$
\begin{array}{|c|c|c|c|c|}
\hline+ & 0+P & 1+P & 4+P & 6+P \\
\hline 0+P & 0+P & 1+P & 4+P & 6+P \\
\hline 1+P & 1+P & 2+P & 6+P & 4+P \\
\hline 4+P & 4+P & 6+P & 0+P & 1+P \\
\hline 6+P & 6+P & 4+P & 1+P & 0+P \\
\hline
\end{array}
$$

$$
\begin{array}{|c|c|c|c|c|}
\hline \cdot & 0+P & 1+P & 4+P & 6+P \\
\hline 0+P & 0+P & 0+P & 0+P & 0+P \\
\hline 1+P & 0+P & 1+P & 4+P & 6+P \\
\hline 4+P & 0+P & 4+P & 4+P & 6+P \\
\hline 6+P & 0+P & 6+P & 0+P & 0+P \\
\hline
\end{array}
$$

Since $(6+P)(4+P)=0+P \in \frac{P}{P}$, which implies $(6+P)^{2}=0+P \in \frac{P}{P}$, hence $\frac{P}{P}$ is a primary ideal in $\frac{N}{P} \Rightarrow \frac{P}{P}$ is an almost primary ideal of $\frac{N}{P}$.

References

1. A. O. Atagün, H. Kamac, İ. Takekin \& A. Sezgin, P-properties in near-rings, J. Math. Fund.

Sci.,
51(2), 162-167 (2019).
2. G. Birkenmeier, H. Heatherly \& E. Lee, Prime ideals in near-rings, Results in Mathematics, 24, 27-48 (1993).
3. B. Elavarasan, Generalizations of prime Ideals in near-rings, Int. J. Open Problems Compt. Math., 4 (4), 47-53 (Dec., 2011).
4. A. Frohlich, Distributively generated near-rings, Proc. London Math. Soc., 3 (8), 76-108 (1958).
5. W. L. M. Holcombe, Primitive near-rings, Dissertation University of Leeds, (1970).
6. K. Koppula, B. S. Kedukodi \& S. P. Kuncham, On perfect ideals of seminearrings, Beitr Algebra Geom (2020). https://doi.org/10.1007/s13366-020-00535-2
7. G. Pilz, Near-rings, North-Holland Publishing Co., Amsterdam, second edition, 1983.
8. D. Ramakotaiah \& G. K. Ra

