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Abstract 

This paper develops the Weibull distribution by adding a new parameter to the classical distribution, the 

generalized power generalized Weibull mixture cure model distribution, and it’s extremely useful when modeling 

survival data with parameter hazard rate function shape. As a result, there is greater flexibility in analyzing and 

modeling various data types. The essential mathematical and statistical characteristics of the proposed distribution 

are generated. In this paper. Many well-known life time special sub-models, such as Rayleigh, Power generalized 

Weibull, Nadarajah-Haghighi, Weibull, and Exponential, are included in the proposed distribution. The maximum 

likelihood distribution method was used to estimate the unknown parameters of the proposed distribution; and the 

effectiveness of the estimators was determined using Markov Chain Monte Carlo simulation study. The Markov Chain 

Monte Carlo used to develop diagnostic methods. This distribution is important because it can model non-

monotone and monotone, upside-down bathtub, and bathtub hazard rate functions. All of which are widely used in 

survival and efficiency data analysis. Moreover, the flexibility and effectiveness of the proposed distribution are 

demonstrated in a real-world data set and compared to its sub models. Based on the goodness of fit and in- 

formation criterion value, the proposed distribution is accurate. Finally, the estimation of the data set is determined 

using Bayesian inference and Gibb’s sampling performance. In addition to Bayes estimates, the highest posterior 

density reliable intervals and Markov Chain Monte Carlo convergence diagnostic technique were used. 

Keywords: Bathtub, Bayesian, Classical Approach, Hazard Rate, Maximum Likelihood Estimation, Monotonic 

and Non-Monotonic. 

 

1. INTRODUCTION 

Inconsistency and survival studies, applied statisticians use a variety of probability 

distributions. The distributions can be used in a variety of disciplines, including engineering, 

medicine, economics, industrial and physical fields, and many others (Muse et al.,2021).The 

most commonly used distributions in survival and consistency analysis are gamma distributions, 

exponential distribution, Weibull distributions, generalized exponential distributions, 

generalized gamma distributions, log-logistic distributions, extreme value distributions, log-

normal distributions, generalized Weibull distributions and Burr XII distributions (Muse et al., 

2021). (Bagdonavicius & Nikulin, 2001), suggested the three-parameter power generalization 

of the Weibull distribution, by adding a shape parameter.  

 

file:///C:/Users/user/Downloads/Beatrice%20's%20manuscript(1).docx%23_bookmark31
file:///C:/Users/user/Downloads/Beatrice%20's%20manuscript(1).docx%23_bookmark31
file:///C:/Users/user/Downloads/Beatrice%20's%20manuscript(1).docx%23_bookmark31
file:///C:/Users/user/Downloads/Beatrice%20's%20manuscript(1).docx%23_bookmark31
file:///C:/Users/user/Downloads/Beatrice%20's%20manuscript(1).docx%23_bookmark31
file:///C:/Users/user/Downloads/Beatrice%20's%20manuscript(1).docx%23_bookmark10
file:///C:/Users/user/Downloads/Beatrice%20's%20manuscript(1).docx%23_bookmark10


 
 
 
 

DOI 10.5281/zenodo.7476763 

 

1462 | V 1 7 . I 1 2  
 

The power gene ralized Weibull distribution’s cumulative density function and probability 

density function are shown; 

G(t) = 1 − exp{1 − (1 + ξtϕ)
ω

} , ϕ, ξ, ω, t > 0             (1) 

And g(t) = ξϕωt(ϕ−1)(1 + ξtϕ)1−ω exp{1 − (ξtϕ)
ω

} , ϕ, ξ, ω, t > 0       (2) 

Where ϕ and ω are two shape parameters ξis a scale parameter, respectively. When ω=1, the 

normal Weibull distribution is a special case of one. This is also an extended form of the 

exponential distributions (Selim, 2018),(Muse et al., 2021),(Zhang & Xie, 2007). The power 

generalized Weibull distribution’s hazard rate function is good and flexible. This distribution is 

commonly used in the development of accelerated failure time models. The chi-square goodness 

of fit test was also used to show that a PGW first analyzed the randomized censored survival 

time’s data from patients enrolled in a head and neck cancer clinical trial. (HAGHIGHI, 2009), 

(Nikulin & Haghighi, 2006),(Gupta et al., 1998). In this paper, we focus on a GPGW with a mixture 

cure model modification, which, while similar in shape to the PGW distribution, is better suited 

for use in survival data analysis when focusing on censored observations, which are usual in 

survival data. Since the survival functions are complicated (Selim, 2018),(Muse et al., 2021), 

the presence of missing data makes the use of  Weibull or exponential models difficult. 

Nonetheless, since logarithms of very small positive numbers give a large negative numbers, 

the Weibull distribution may overestimate very short survival times (Muse et al., 2021). We will 

concentrate on the GPGW Mixture cure model because its hazard rate shows the above said 

behavior. 

(Gupta et al., 1998), Presented the exponentiated method, which is one of the most well- known 

and oldest method for generalizing probability distributions. If Ŝ(t) = [1 − S(t)]    and 

S(t)are the survival and cumulative density function of the baseline distribution, respectively, 

then CDF of exponentiated distribution family of Lehmann type II is defined as one minus,  β 

power of   Ŝ(t) 

F(T) = 1 − Ŝ(T)β (3)
 

As well as the respective probability density function (pdf) 

f(t) = βz(t)Ŝ(T)β−1 (4)
 

Where z (t) indicates the baseline distribution’s pdf. As a result, in this study, we suggest a cure 

fraction model that has a more adjustable survival time distribution for the latent variable (Omer 

et al., 2020). In this paper, we contrast the effectiveness of the GPGW mixture cure model 

and its sub-models, which are based on the GPGW-MCM and are adaptable to various forms of the 

failure rate function. In the colon data set, for example, which is accessible in the R package 

colonDC, we consider the presence of hazard function shapes, parameter estimation, and 

parameter performance (convergences). The parameters were estimated using the Bayesian 

method (De Pascoa, et ai.,2011). 
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2. THE COLON DATA 

Colorectal cancer (CRC), the third most common malignancy and the second most lethal cancer 

is expected to cause 1.9 million new cases and 0.9 million deaths worldwide in 2020 (Xi & Xu, 

2021). CRC is more common in developed countries, and its prevalence is rising in middle 

and lower income countries as a results of westernization. Furthermore, there is an increasing 

incidence of CRC with an early onset. The high number of CRC cases is posing an increasing 

global public health challenge (Xi & Xu, 2021). Boosting CRC awareness is critical for 

promoting healthy lifestyle choices, novel CRC action plans, and the implementation of global 

detection methods, all of which are crucial to reducing CRC morbidity and mortality in the 

future. Even through the largest part of colon patients are cured by their primary treatment, 

it is impossible to distinguish them from uncured patients (Xi & Xu, 2021), (Omer et al., 2020). 

As a result, accurate estimation of the likelihood of cure is critical in order to plan further 

treatment to enhance the survival of uncured colon cancer patient’s citeomer2020cure. We 

suggest colon data from R colonDC in the Survival package, on Cancer, obtained from a 

clinical trial, in this study. A total of 929 patients were included in this trial, with 49% being 

exposed to the treatment and the remaining individuals being right-censored. 

 

3. GPGWMCM (EXPONENTIATED POWER GENERALIZED WEIBULL 

DISTRIBUTION MIXTURE CURE MODEL 

The reliability function S (t) of the generalized power generalized Weibull distribution model 

is simply the βth power of the reliability function of power generalized Weibull distribution as 

follow, 

S(t) = [exp {1 − (1 + ξtϕ)ω}]β, ϕ, ξ, ω, β > 0, t ≥ 0                                               (5) 

F(t) = 1 − S(t) = 1 − exp{β[1 − (1 + ξtϕ)
ω

]} ,    ϕ, ξ, ω, β, > 0, t > 0             (6) 

And the associated probability density function is 

f(t) = ϕξωβtϕ−1(1 + ξtϕ)ω−1 exp{β[1 − (1 + ξtϕ)
ω

]} , ϕ, ξ, ω, β > 0, t > 0 (7) 

Where ξ and β are scale parameters, and ϕ and ω are shape parameters. Because the Weibull 

distribution is a special case of exponentiated (Gupta et al., 1998) when ω = β = 1 , it can also 

be regarded a generalization of the Weibull distribution. 

3.1 Fundamental properties of S (t) and hazard function λ (t) 

S (0) equals 1 and S (1) equals infinity (∞). S (t) is a function that does not increase. N (t) 

the number of events that occurred in (0, t) Pois(λ,t) (Beatrice, Samuel, & George, 2022) 

As a result, SMCM (t) of the generalized power generalized Weibull distribution mixture cure 

model is given as; 

SMCM(t)=ζ + (1 + ζ)S(t)      (8) 
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The associated pdf is; 

fMCM(t) = (1 + ζ)f(t)                                        (9) 

3.2 Some GPGW-MCM distribution special distributions 

Nadarajah-Haghighi (NH), Rayleigh (R), Weibull (W) and power generalized Weibull (PGW) 

mixture cure modes distributions are sub-models of the GPGW mixture cure modes 

distributions. Table 1 shows sub-models of the GPGWMCM distribution for various parameter 

values. 

Table 1: Table of GPGWMCM distribution and its sub-models 

 

3.3 The Statistical Characteristics of the GPGWMCM Distribution 

Under this section, we generate the GPGW mixture cure model distribution’s moments, moment 

generating function, quantile function, kurtosis, skewness, and random variables generating 

function, mean deviations, incomplete moments, and mean deviations. (Selim, 2018). 

3.3.1 The quantile functions 

The quantile function is an option available to the pdf and CDF for describing the distribution of 

random variables. The quantile function is frequently used to compute statistical measures like 

the median, skewness, and kurtosis, as well as to generate random variables. The real solution 

of the given equation is defined as the qth quantile (Kilai, et al., 2022), (Dhungana & Kumar, 

2022). 

𝐹(𝑡𝑞) = 𝑞, 0 ≤ 𝑞 ≤ 1                                (10) 

As a consequence, the quantile function Q (q) for GPGW distribution is, 

𝑄(𝑞) = 𝜉
−

1

𝜙 {[1 −
𝑙𝑛

(𝜁−𝑞)

(1−𝜁)

𝛽
]

1
𝜔⁄

− 1}

1
𝜙⁄

    (11) 

The median M (t) of GPGW − MCM can be obtained by setting q = 0.5, to the previous 

function II, 
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𝑀(𝑡) = 𝜉
−

1

𝜙 {[1 −
𝑙𝑛

(𝜁−0.5)

(1−𝜁)

𝛽
]

1
𝜔⁄

− 1}

1
𝜙⁄

    (12) 

3.3.2 Kurtosis and Skewness 

The Moors’ kurtosis measure based on octiles (Moors, 1988), (Selim, 2018), is provided as; 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝑄(

7

8
)−𝑄(

5

8
)+𝑄(

3

8
)−𝑄(

1

8
)

𝑄(
6

8
)−𝑄(

2

8
)

    (13) 

And kurtosis and skewness measurements are used in statistical to characterize a distribution 

or a data set. Bowley’s skewness is a quantile-based measure. (Kenney & Keeping, 1962), 

(Selim, 2018), (Kilai et al., 2022) is obtained by; 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =    
𝑄 (

3
4) − 2𝑄 (

1
2) + 𝑄 (

1
4)

𝑄 (
3
4) − 𝑄 (

1
4)

 

The quantile-based skewness and kurtosis measures, such as and Moors’ kurtosis, and Bow- 

ley’s skewness, have several advantages over the classical measures, including being less 

sensitive to outliers and being available for distributions with no defining moments (Selim, 

2018). 

3.3.3 Creating random variables 

The GPGW distribution’s quantile function has a closed form, which makes simulation easier. 

As a consequence, the following function directly generates the random variables of the GPGW 

distribution. Where 𝜙, 𝛽, 𝜉 𝑎𝑛𝑑 𝜔  are recognized parameters, and 𝜇 is a Uniform (0, 1) (Selim, 

2018). 

3.3.4 The moment 

If X has the GPGW distribution, then the rth moment for integer value of   
𝑟

𝜙
  is; 

𝜇𝑟
′    = 𝛽𝑒𝛽𝜉

1

−𝜙 ∑
(−1)

𝑗+
𝑟
𝜙

𝛽
1
2

+1
(

𝑟

𝜙

𝑗
) 𝛤 (

𝑗

𝜔
, 1, 𝛽)

𝑟

𝜙

𝑗=0
       (13) 

When𝛽 = 1, the moment of the Nikulin Haghighi distribution is as follow; 

𝜇𝑟
′    = 𝜉

1

−𝜙 ∑ (−1)
𝑗+

𝑟

𝜙 (
𝑟

𝜙

𝑗
) 𝛤 (

𝑗

𝜔
, 1,1)

𝑟

𝜙

𝑗=0
    (14) 

Which is consistent with the results obtained by (Nadarajah & Haghighi, 2011). 
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The first 𝜇1
′  and second   𝜇2

′  moments, as well as the variance of T, can be calculated  

As follow; 

𝜇1
′  =  𝐸(𝑇) = 𝛽𝑒𝛽𝜉

1

−𝜙 ∑
(−1)

𝑗+
1
𝜙

𝛽
1

𝜔⁄ +1
(

𝑟

𝜙

𝑗
) 𝛤 (

𝑗

𝜔
, 1, 𝛽)

1

𝜙

𝑗=0
     (15) 

𝜇2
′  =  𝐸(𝑇2) = 𝛽𝑒𝛽𝜉

2

−𝜙 ∑
(−1)

𝑗+
2
𝜙

𝛽
1

𝜔⁄ +1
(

𝑟

𝜙

𝑗
) 𝛤 (

𝑗

𝜔
, 1, 𝛽) 𝑉𝑎𝑟(𝑇) =

2

𝜙

𝑗=0
𝜇2

′ − [𝜇1
′  ]2   (16) 

Respectively. As shown below, the non-central in 15 can also be used to calculate the central 

moment’s µr and cumulants kr. 

𝜇𝑟 = ∑ (−1)𝑘(𝑟
𝑘

)𝑟=1
𝑘=1 𝜇1

𝑟𝑘𝜇𝑟−𝑘      (17) 

And      

𝑘𝑟 = 𝜇𝑟
′ = ∑ (−1)𝑘(𝑟−1

𝑘−1
)𝑟=1

𝑘=1 𝑘𝑟𝜇𝑘−1
′       (18) 

Cumulants 𝑘𝑟are quantities that can be used instead of distribution moments. Based on 

Cumulants in the forms, the skewness 𝛾1 and kurtosis 𝛾2 can be calculated 𝛾1 =
𝑘3

𝑘3
3/2 

And 𝛾2 =
𝑘4

𝑘2
2 respectively. 

3.3.5 The moment generating function 

If X GPGW distribution, then the moment generating function is for any integer value  
𝑘

𝜙
 

𝑀𝑧(𝑡) = 𝛽𝑒𝛽𝜉
𝑟

−𝜙 ∑ ∑
(−1)

𝑗+
𝑟
𝜙𝑡𝑟

𝛽
1

𝜔⁄ +1𝑟!
(

𝑟

𝜙

𝑗
) 𝛤 (

𝑗

𝜔
, 1, 𝛽)∞

𝑗=0
∞
𝑟=0     (19) 

 

4. ANALYSIS OF RELIABILITY 

This section determines the survival function S (t), failure rate function h (t), reversed hazard 

function R (t), and cumulative failure rate function H (t) for the GPGW distribution. 

The Survival Function 

The cumulative distribution function in 1 can be used to derive the GPGW distribution’s survival 

function R (t) (Lai, 2014). 

𝑆(𝑡) = 1 − 𝐹(𝑡) = [𝑒1−(1+𝜉𝑧𝜙)
𝜔

]
𝛽

, 𝑡 > 0   (20) 
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4.1 The hazard functions 

At any time, the hazard function (h (t)) for a continuous distribution with pdf and CDF is 

de- scribed as follows; 

ℎ(𝑡) =
𝑃(𝑡<𝑇1≤𝑡+𝛥𝑡|𝑇1>𝑡)

𝛥𝑡
=

𝑓(𝑡)

𝑆(𝑡)
=

𝑓(𝑡)

 1−𝐹(𝑡)
       (21) 

Following that, the h (t) for any time of the GPGW distribution can be determined through the 

CDF and pdf given in equation 5 and 7 (Selim, 2018) as follows; 

ℎ(𝑡) = 𝜙𝜉𝜔𝛽𝑡𝜙−1(1 + 𝜉𝑡𝜙)𝜔−1, 𝑡 > 0 (22) 

4.2.1 The increasing, decreasing, bathtub, and unimodal failure rate of the GPGW 

Monotone increasing when either 𝜙 > 1  and 𝜙 = 1  or 𝜔𝜙 >or ω > 1. Monotone 

decreasing when either 𝜙 < 1 and ω < 1 or 𝜙𝜔 = 1   or 𝜔 < 1. Bathtub is when 0 < 𝜙 < 

1 and𝜙𝜔 > 1. Unimodal (inverted bathtub shaped) if both 𝜙 > 1 and 0 < 𝜙 ω < 1.  Constant 

if h (t) = 𝛽𝜉 if 𝜙 = ω = 1(Lai, 2014). Such plots show the h(t)’s are flexibility, which makes 

it valuable and appropriate for non- monotone hazard behaviors that are most probable to be 

detected in real-world situations(Lai, 2014). 

A graphical method based on the TTT, Figure2 , transforms presented by (Barlow & Campo, 1975) 

(Carrasco et al., 2008) will be used as a tool to demonstrate the variability of the hazard rate 

shape for a given data set. If the empirical TTT transform is convex, concave, concave then 

convex, or concave then concave, the shapes of the corresponding hazard rate function for such 

failure data are decreasing, increasing, bathtub, and unimodal, respectively (Carrasco et al., 

2008),(Bidram et al.,  2015),(Cooray, 2006) 

   

(a) Constant hazard     (b) inverse bathtub 

(c) Non monotonic decreasing hazard   (d) Non monotonic increasing hazard 
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(e) Modified Bathtub inverse    (f) Bathtub 

Figure 1: Plots of the hazard function of the GPGW distribution for various parameter 

values.  

 

Figure 2: TTT plot, Boxplot, QQ-plot, and kernel plot and histogram survival time 

for colon data shown hazard is monotonic. 

4.3 Rate functions for the reversed and cumulative hazards 

The GPGW distribution’s cumulative hazard rate H (t) and reversed hazard r (t) functions 

are shown below 

𝐻(𝑡) = 𝑙𝑛[1 − 𝑒𝑥𝑝{𝛽[1 − (1 + 𝜉𝑡𝜙)
𝜔

]}] , 𝑡 > 0   (23) 

𝑟(𝑡) =
𝜙𝜉𝛽𝜔𝑡𝜙−1(1+𝜉𝑡𝜙)𝜔−1[𝑒1−(1+𝜉𝑡𝜙)𝜔

]𝛽

1−[𝑒1−(1+𝜉𝑡𝜙)𝜔
]𝛽

   (24) 
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4.3.1 Maximum likelihood estimation 

Maximum likelihood estimation (MLE) for the GPGW-MCM distribution parameters σ = 

( 𝜙, 𝜔, 𝛽, 𝑎𝑛𝑑𝜉). is described in this study. Assume that 𝑡1, 𝑡2, 𝑡3 … … . 𝑡𝑛   represents a totally 

random sample of size n drawn from the GPGW-MCM distribution. Following that, the 

likelihood function is used (Selim, 2018). 

𝐿(𝜎|𝑡) = ((1 − 𝜍)𝜙𝜔𝛽)𝑛 ∏ 𝑡𝑖
𝜙−1

(𝜉𝑡𝑖
𝜙

+ 1)
𝜔−1

(𝑒1−(𝜉𝑡𝑖
𝜙

+1)𝜔
)𝛽𝑛

𝑖=1     (24) 

In additional to the log likelihood function (log (L);) 

𝑙𝑜𝑔(𝐿) = 𝑛𝑙𝑜𝑔((1 − 𝜍)𝜙𝜔𝛽) + (𝜙 − 1) ∑ 𝑙𝑛𝑡𝑖 + (𝜔 − 1) ∑ 𝑙𝑛(𝜉𝑡𝑖
𝜙

+ 1)𝑛
𝑖=1

𝑛
𝑖=1 + 𝛽 −

𝛽 ∑ (𝜉𝑡𝑖
𝜙

+ 1)𝜔𝑛
𝑖=1          (25) 

The following are partial derivatives of the preceding equation; 

𝛿𝑙𝑛𝐿

𝛿𝛽
=

𝑛

𝛽
− ∑ (𝜉𝑡𝑖

𝜙
+ 1)𝜔 + 1𝑛

𝑖=1        (26) 

𝛿𝑙𝑛𝐿

𝛿𝜍
=

𝑛

1+𝜍
         (27) 

𝛿𝑙𝑛𝐿

𝛿𝜙
=

𝑛

𝜙
− ∑ 𝑙𝑛(𝑡𝑖) + 𝜙𝜉𝛽 ∑ 𝑙𝑛(𝑡𝑖) 𝑡𝑖

𝜙
(𝜉𝑡𝑖

𝜙
+ 1)𝜔−1 + (𝜔 − 1)𝜉 ∑

𝑙𝑛 (𝑡𝑖𝑡𝑖
𝜙

𝜉𝑡
𝑖
𝜙

+1

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1  (28) 

𝛿𝑙𝑛𝐿

𝛿𝜉
=

𝑛

𝜉
= 𝜔𝛽 ∑ (𝜉𝑡𝑖

𝜙
+ 1)𝜔−1 + (𝜔 − 1) ∑

𝑡𝑖
𝜙

𝜉𝑡
𝑖
𝜙

+1

𝑛
𝑖=1

𝑛
𝑖=1     (29) 

𝛿𝑙𝑛𝐿

𝛿𝜔
=

𝑛

𝜔
− ∑ (𝜉𝑡𝑖

𝜙
+ 1)𝜔 + 1 − 𝛽 ∑ 𝑙𝑛(𝜉𝑡𝑖

𝜙
+ 1)(𝜉𝑡𝑖

𝜙
+ 1)𝜔𝑛

𝑖=1
𝑛
𝑖=1    (30) 

The maximum likelihood estimators of 𝛽, 𝜔, 𝜙, 𝜁, 𝑎𝑛𝑑 𝜉 are the simultaneous solutions of the 

nonlinear likelihood equation. 

The previous equations cannot be solved analytically, but statistical software can solve them 

numerically using iterative techniques such as the Newton-Raphson algorithm. 

 

5. MONTE CARLO SIMULATION INVESTIGATION (MCMC) 

We use an MCMC simulation study in this category to evaluate the performance of parameter 

estimators for a finite sample of size n. ,(Muhammad et al., 2022),(Alzaghal et al., 2016) 

The simulation study was conducted using the generalized power generalized Weibull 

distribution to determine the biases (BIAS), mean square error (MSE), root mean square error 

(RMSE),and estimates for the model parameters 𝜁, 𝜙, 𝜔 𝜉 𝑎𝑛𝑑 𝛽  The simulation experiment 

employed a number of simulations with varying sample sizes and parameter values(Muhammad 

et al., 2022),(Alzaghal et al., 2016). The quantile function is given in the equation to generate 

random samples for the GPGW-MCM. The estimations of the GPGW- MCM model are 

computed using the nlminb, which is an R-function with the method argument set to 

"BFGS"(generally developed to help improve smoothness) (Muse et al., 2021). The Estimate, 
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BIAS, RMSE, MSE, Naive SE and CP of the parameters were determined for each piece of 

simulated data, say𝜁, 𝜙, 𝜔, 𝜉, 𝑎𝑛𝑑 𝛽    for i=1,2,3,  n (Muse et al., 2021). 

𝐵𝑖𝑎𝑠(𝜓̂) =
1

𝑁
∑ (𝜓̂ − 𝜓)𝑁

𝑖=1         (31) 

𝑀𝑆𝐸(𝜓̂) =
1

𝑁
∑ (𝜓̂ − 𝜓)2𝑁

𝑖=1         (32) 

𝑅𝑀𝑆𝐸(𝜓̂) = √
1

𝑁
∑ (𝜓̂ − 𝜓)2𝑁

𝑖=1     (33) 

𝑁𝑎𝑖𝑣𝑒𝑆𝐸 =
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑆𝐷

√𝑛
    (34) 

𝐶𝑃 = 𝜓̂ ∓ 1.96 × 𝑆𝐸(𝜓̂)                           (35) 

Where 𝜓̂ = 𝜁, 𝜙, 𝜉, 𝜔 𝑎𝑛𝑑 𝛽 For various sample sizes, Estimations, Bias, and RMSE values of 

the parameters𝜁, 𝜙, 𝜉, ω, and 𝛽 are shown. We indicate, based on these findings, that MCMC- mcm 

do a good job of estimating model parameters, ensuring that the estimates for these sample sizes 

are fairly stable and close to the true values (Muse et al., 2021). The posterior mean, Bias, MSE, 

and RMSE are shown in Table 2. Further to that, the model’s parameters’ estimations are very 

close to the true values. As a result, estimates and their asymptotic results can be used to 

calculate confidence intervals for model parameters even with a small sample size. 

 

6. DATA ANALYSIS 

Analytical initiatives are used to examine which distribution fits the information the best. There 

are four discriminatory practices measures among these analytical initiatives: CAIC (Consistent 

Akaike Information Criterion), AIC (Akaike Information Criterion), and HQIC (Hannan-Quin 

Information Criterion) BIC (Bayesian Information Criterion),(Muse et al., 2021),(Omer et al., 

2020)  

6.1 Model Choice 

The comparisons of mixture cure models based on various distributions The Akaike Information 

Criteria(AIC) presented by(Suga et al., 2003), The Bayesian Information Criteria(BIC), 

presented by (Teo et al., 2012), and Hannan Quinn Information Criteria (HQIC) suggested by 

(Hannan & Quinn, 1979),(Lechman & Popowska, 2020) were used to evaluate data. A lower 

information criterion value indicates a better model fit (Omer et al., 2020). The AIC, BIC, 

CAIC, B CAIC and HQIC are defined below. 

𝑨𝑰𝑪 = 2 𝑙𝑛[𝐿(𝜂)] + 2ℎ, 𝑩𝑰𝑪 =  −2 𝑙𝑛[𝐿(𝜂)] + ℎ𝑙𝑛(𝑝)  𝑎𝑛𝑑 𝑯𝑸𝑰𝑪 = −2 𝑙𝑛[𝐿(𝜂)] +
2ℎ𝑙𝑛[𝑙𝑛(𝑝)], 𝑩𝑪𝑨𝑰𝑪 = −2 𝑙𝑛[𝐿(𝜂)] + ℎ[𝑙𝑛(𝑝) + 1], 𝑎𝑛𝑑 𝑪𝑨𝑰𝑪 = −2 𝑙𝑛[𝐿(𝜂)] + 2ℎ +
[2ℎ × (ℎ + 1)]/(𝜂 − 𝑙𝑛 [𝐿(𝜂)])                                                                                   (36) 

where L(η) is the likelihood function h represents the number of free parameters in the model, 

and p is the number of observations (Beatrice et al., 2022),(Omer et al., 2020). From the        table 2, 

GPGW -MCM has the smallest criterions so is the best fit model for the data. 
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7. FORMULATION OF A BAYESIAN MODEL 

Given a set 𝑡 = (𝑡1 + 𝑡2 + 𝑡3 + ⋯ 𝑡𝑛) of GPGW data, the model’s likelihood function is given 

by 

𝐿 = ∑ [𝜈𝑖𝑙𝑛𝑓(𝑡𝑖) + (1 − 𝜈𝑖)𝑙𝑛𝑆𝑖̂(𝑡𝑖)]𝑛
𝑖=1                                                      (37) 

Therefore, the log observed data is where for subject 𝑡𝑖 is the observed time (minimum of event 

and censoring times) and 𝜈𝑖 is the indicator that an event has occurred (Li et al., 2010). From 

equation, 5 and 6, log likelihood is given as; 

Table 2: Maximum likelihood results for the GPGWMCM distribution and its sub-

models 

 

 

 

 

 

 

Models Parameters Estimates AIC BIC CAIC BCAIC HQIC 

 True values       

GPGWMCM β0=1 1.2 6 20.5023 6.0258 20.5023 11.5315 

 β=12 12.14      

 ζ=10 10.26      

 ω=1 1.06      

 φ=3 3.1      

 ξ=0.3 0.3      

PGWMCM β0=0.2 0.2 8 27.3364 8.043 31.3364 15.3754 

 ζ=10 10.26      

 ω=1 1.06      

 φ=3 3.1      

 ξ=0.3 0.3      

WMCM β0=1 1.2 10 34.1705 10.0645 39.1705 19.2192 

 ζ=10.26 10.26      

 φ=3 3.1      

 ξ=0.3 0.3      

RMCM β0=1 1.2 12 41.0046 12.090 47.0046 23.06 

 ζ=10.26 10.26      

 ξ=0.3 0.3      

NHMCM β0=1 1.2 7.9 27.3365 8.103 31.34 15.3854 

 ζ=10 10.26      

 ω=1 1.06      

 ξ=0.3 0.3      

file:///C:/Users/user/Downloads/Beatrice%20's%20manuscript(1).docx%23_bookmark28
file:///C:/Users/user/Downloads/Beatrice%20's%20manuscript(1).docx%23_bookmark28
file:///C:/Users/user/Downloads/Beatrice%20's%20manuscript(1).docx%23_bookmark0
file:///C:/Users/user/Downloads/Beatrice%20's%20manuscript(1).docx%23_bookmark1


 
 
 
 

DOI 10.5281/zenodo.7476763 

 

1472 | V 1 7 . I 1 2  
 

Table 3: Posterior summary of the GPGW mixture cure model distribution, and 1000 

sample size 

 

Table 4: Under non-informative priors, numerical summaries of the posterior properties 

for the GPGW-MCM model. 

 

Table 5: chains, each with 9000 iterations (first 1000 discarded) 

 

n. eff is a rough measure of effective sample size for each parameter, and R̂ is the potential 

scale reduction factor (at convergence, R  ̂=1).   DIC information (using the rule, pD = var (deviance)/2) 

pD = 13.9 and DIC = 32239.3 (lower deviance is better). 



 
 
 
 

DOI 10.5281/zenodo.7476763 

 

1473 | V 1 7 . I 1 2  
 

7.1 Visual Convergence Diagnostic of the Real Data 

We assessed the convergence of the MCMC algorithm for the proposed models and their 

special cases (Nakhaei, et al.,2021),(Omer et al., 2020) using both numerical and visual 

methods. The MCMC algorithm GPGW-MCM has converged to the joint posterior distribution, 

as shown by the summary results in the above table, because the potential scale reduction factor 

R is 1, the trace plots mixed well, the correlation between the parameters is minimal, the 

effective sample size (n.eff) is greater than 400, and the Monte Carlo error (SE) is less than 5% 

of the posterior standard deviations for all parameters. (Muse et al., 2022), (Omer et al., 2020). 

7.2 Trace plot 

A trace plot 3 is necessary for evaluating convergence and diagnosing chain problems (Nakhaei 

et al., 2021). It essentially depicts the sampling process’s time series, with the expected result 

being "white noise"(Nakhaei et al., 2021) Aside from being a useful tool for assessing within 

chain convergence, the use of different colors for each chain facilitates chain comparison. 

 

Figure 3: These plots appear to show good "mixing" of the two chains, so we usually say 

that good mixing should resemble "fuzzy caterpillars. 

7.2.1 Density plot  

Generates overlapped density plots with various colors for each chain, allowing you to compare 

the target distribution and whether each chain has converged in a similar space. 
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Figure 4: Look for sufficient overlap between the two densities 

7.2.2 Running means plot 

ggs running returns a time series of the chain’s running mean, allowing you to see whether 

the chain is moving quickly or slowly toward its distribution with specificity (Nakhaei et al., 

2021). The comparison is aided by a horizontal line containing the mean of the chain. Using 

the same scale in the vertical axis allows you to compare chain convergence. In addition to 

all chains having the same mean, the intended result is a line that is close to the average mean 

immediately. (Which is easily accessed through the comparison of the horizontal lines)(Nakhaei 

et al., 2021). 

Figure 5: Running Plots, for each chain, display each posterior draw per iteration by 

variable. The dark line in this plot represents the chain’s posterior mean. 
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7.2.3 Gelman Diagnostic 

Figure 6: Gelman Diagnostic plots. 

Figure 7: The Potential Scale Reduction Factor (R) (Gelman et al. 2003) is based on 

comparing between-chain variation with within-chain variation for the same parameter. 

It is expected to be near 1. 

7.2.4 Geweke Diagnostic plots 

(Geweke, 1992) created a diagnostic that compares the location of the sampled parameter on 

two different time intervals. For example, if the mean of the first is mean values of the parameter 

in the two-time intervals is very close to each other, it is assumed that the two unlike parts of 

the chain are in the same location in the state space. 
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Figure 8: The Geweke z-score diagnostic, on the other hand, compares the first and last 

parts of the chain. It is also considered a frequentist mean comparable, with 95% of the 

values falling between -2 and 2. Through default, the area between -2 and 2 is 

highlighted for faster investigation of difficult chains. 

7.2.5 Auto correlation plots 

The auto correlation plot predicts a bar at one in the first lag but no auto correlation after 

that. While auto correlation is not a signal of lack of convergence in and of itself, it may indicate 

some misbehavior of several chains or parameters, or that a chain requires more time converge. 

Thinning the chain is the simplest way to solve auto correlation problems (Nakhaei et al., 2021). 

The auto correlation plot can be used to easily extract the thinning interval. Because the auto 

correlation axis is bounded by default between -1 and 1, all subplots are comparable The nLags 

argument specifies the number of lags to plot, which is set to 50 by default (Nakhaei et al., 2021). 

Figure 9: Auto correlational plot diagnostic of the parameter’s convergence 
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7.2.6 Histogram plots 

Although it is not a convergence plot, it is useful for providing a quick overview of the value 

distribution and the shape of the posterior distribution. 

 

Figure 10: The graph combines the values from all of the chains. 

7.2.7 Posterior estimates (Density plots) that contrast the distribution of the entire chain 

with only the last part of it. 

Figure 11: A posterior estimate for comparing the entire chain to the most recent 

segment. 
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Posterior estimates, generates overlapped density plots that correlate the last part of the chain 

(by default, the last ten percent of the values are colored green.) with the entire chain with the 

entire chain based on the concept of overlapping densities (black). The initial and final parts of 

the chain should ideally be sampling from the same utilized distribution, so that the overlapped 

densities are similar. Because the colliding/overlapping densities belong to the same chain, the 

different columns of the plot correspond to the different chains (Nakhaei et al., 2021). 

7.2.8 The correlation between the posterior mean 

ggs cross correlation generates a tile plot 13 with the correlations between all parameters to 

diagnose potential convergence problems caused by highly correlated parameters. The absolute 

scale argument specifies whether the scale must be between -1 and +1 (Nakhaei et al., 2021). 

The absolute scale is used by default, which puts the cross correlation issues in context. How- 

ever, in cases where cross correlation between parameters is not a major issue, using relative 

scales to identify the most problematic parameters may be useful. 

7.2.9 Paired plots 

The ggs pairs function in the package ggally makes it simple to extend gg-mcmc by displaying 

scatter plots 14 of the pairs of parameters in the ggs object, densities, and cross correlations in a 

single layout. In the plot, the lower argument to ggs pairs is passed as a list to gg pairs, resulting 

in contours rather than scatter plots in the lower quadrant (Nakhaei et al., 2021). 

Figure 12: The scatter/contour plots between all pairs of these variables are used to 

represent the pairs plot. 
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8. CONCLUSION 

The statistical and mathematical properties of the GPGW-MCM were introduced in this paper. 

The quantile function and its associated results were observed, as well as moments and their 

associated results and central moments. When the data was uncensored or complete, we just 

regarded Bayesian and frequentist inference of the suggested distribution’s uncertain 

parameters. The Gibbs sampling procedure and independent gamma priors on the scale and 

shape parameters are used to generate the Bayesian estimates. Bayesian estimates clearly out- 

perform maximum likelihood estimates only when prior information is accessible. Monte Carlo 

simulations are used to evaluate estimator attitudes, difference convergence plots, and posterior 

distributions.  

The information criterion of sub-models was examined, as a result, we conclude that among the 

distributions considered, the GPGW-MCM is the most appropriate model. The GPGW-MCM 

distribution could also be helpful in research incorporating survival models such as multiple 

states, accelerated failure time competing risks, and longitudinal data, frailty, and joint survival 

models. 
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