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Annotation 

The article deals with oscillations of a cylindrical shell located in an infinite environment. In a homogeneous 

system, the cylindrical shell and the infinite medium are elastic or viscoelastic. If one of them is elastic, the other 

is viscoelastic, a heterogeneous system is obtained. The task is reduced to compiling the dispersion equation and 

determining the values of the complex frequencies 
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INTRODUCTION: 

Most of the shells used in mechanical engineering are thin shells, but are based on the use of a 

rather complex mathematical apparatus. Their theory is built on the assumption that the 

material is isotropic, obeys Hooke's law, and the displacements of the points of the shell are 

small compared to its thickness. 

The article deals with the interaction of a cylindrical shell with various mechanical systems 

covering it. The influence of the dissipative properties of the medium on systems is studied. 

A cylindrical shell and a mechanical system are elastic or viscoelastic, a dissipative 

homogeneous system is obtained, if one of them is elastic, the other is viscoelastic, a dissipative 

inhomogeneous system is obtained. 

 

METHODS: 

The task is reduced to drawing up the dispersion equation, determining the values of the 

complex frequencies. 
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The differential equation for the motion of an infinite medium in potentials is written [1]: 
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  Laplace operator, 

j – number of layers,  
j=1.

 

The elastic Lamé coefficients are related to the elastic modulus E and Poisson's ratio as follows. 
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RESULTS: 

 Let us write down the solutions of the wave equation (1) for an unbounded medium. 
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Displacement 
Ur, Uθ with a flat problem through potentials 

,
 are written as follows [3,4]. 
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Formulas for stresses in a plane problem are written as follows [3, 4]. 
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The displacement and stresses of the medium, taking into account (4, 5), takes the form 
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The differential equation of a thin-walled cylindrical shell is obtained in the form [2, 3] 
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In formula (7), R,h is the radius and wall thickness of the cylindrical shell; 

000 ,, R

 Modulus of elasticity, density and Poisson's ratio of the cylindrical shell; 

RrrnRnr // , 

 Stress appearing on the surface of a cylindrical shell. 

The solution of the differential equation (7) is sought in the form of a series 
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Substituting the chosen solution (8) into the differential equation (7), we determine Vn, Wn. 
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In formula (9), 
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in (10) 
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To determine the constants An, Bn from the boundary conditions at -r = R , Ur1 =
W,   Uθ1 = V; we obtain algebraic systems of equations: 
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The dispersion equation of the algebraic systems of equations (12) has the form: 

[C] =   |Z1n ∙ Z4n − Z2n ∙ Z3n| =0;   (13) 

Where, 
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Z3n =
η

∆
 (Y12 R2n –Y22 R2n) +

n

R
Hn

(1)
(α1R);  (14) 

Z4n = 
η

∆
 (Y12 Q2n+Y22 Q2n) + Hn

(1)
(β1R); 

 

DISCUSSION: 

The dispersion equation (13) is solved by the Muller method. The dissipative property of a 

viscoelastic system is determined by the integral equations of Boltzmann – Voltaire [5]: 
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In equation (15) Rλn
, Rμn

− Relaxation kernel; λn,μn – Lame operators, φ(t) −-Arbitrary 

function, t-time. 

Formula (15) is written as follows [6]. 

;)]()(1[
~

  R

s

R

с

nn nт
iГГ   

;)]()(1[~   R

s

R

с

nn nn
iГГ       (16) 

Cosines, sines, the core of relaxation is written as follows [6]. 
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Г(α) − Gamma function; 

A,α , β – Constant number. 

A=0,048,α = 0,1, β = 0,05.  In low viscosity; 

A=0,078,α = 0,1, β = 0,05.  In high viscosity. 

The problem was studied in two versions. The ratio of elastic modul - E=E1/Eo varied in the 

interval (0, 1- 0,2); (n=2),ν1 = 0,2;  ν0 = 0,25; 

ρ =
ρ1

ρ0
⁄ = 0,6 
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2-fig. Dependence of complex natural frequencies 

CONCLUSION 

1. The system is dissipative homogeneous, viscoelastic. The imaginary and real parts of 

the complex frequencies increase monotonically. 

2. The system is dissipative inhomogeneous, the cylindrical shell is elastic, ;0
n

R

.0
n

R  

The imaginary and real parts of the complex frequencies change no monotonically. When the 

real parts of the complex frequencies approach, the imaginary parts intersect. 
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