
 
 
 
 

DOI 10.5281/zenodo.7451525 

 

940 | V 1 7 . I 1 2  

 

THE EUTROPHICATION PROCESS AND ITS EFFECTS ON THE 

AQUATIC POPULATION - A MATHEMATICAL MODEL 

 

BABITHA B.S                                                           

Research Scholar, Jain University, Bangalore, India. Email id:babiraghu@gmail.com     

ANITA CHATURVEDI 

Department of Mathematics, School of Engineering & Technology, Jain University, Bangalore, India. 

Email id: acvedli.05@gmail.com                                                                         

KOKILA RAMESH      

Department of Mathematics, School of Engineering & Technology, Jain University, Bangalore, India.  

Email id: r.kokila@jainuniversity.ac.in     

PRIYA SATISH 

Research Scholar, Jain University, Bangalore, India. Email id: priya_vardini@yahoo.co.in 

 
Abstract 

It is largely observed that the growth of algae from industrial waste disposal and chemical runoff from farming 

fields causes eutrophication of aquatic systems. This process results in an increase of algal blooms and algae. This 

lowers the water's traceability and the level of dissolved oxygen. The growth of large portion of the aquatic 

species, including fish, is negatively impacted by an oxygen shortage and a decrease of opacity. With this in view 

a study is carried out on eutrophication affecting the aquatic species. In this paper, a research investigation on 

impact of eutrophication process on aquatic species' survival in the water has been developed as a mathematical 

model based on non-linear ordinary differential equations. The model includes nutrient concentration, growth rate 

of algae, dissolved oxygen, detritus, and fish population. In order to analyze the formulated model, three 

equilibrium points were considered to analyze the local stability. The first and second equilibrium points, E1 and 

E2 respectively show unstable state, whereas third equilibrium point E3 is nontrivial and locally asymptotically 

stable. Finally the numerical simulation is performed to see the rate of nutrient input affecting different variables 

that are part of the proposed model.  

Keywords: Eutrophication, Discharge of Nutrients, Growth Rate of Algae, Dissolved Oxygen, Detritus 

Concentration  

 

1. INTRODUCTION: 

The main issue affecting the majority of surface water nowadays is eutrophication.   It affects 

aquatic habitats from the Ice cap to the Antarctic, making it among the most obvious examples 

of human alterations to the biosphere. Nutrient enrichment in the water is due to waste disposal 

from the industry and agricultural areas. This increases quantity of phytoplankton and algae, 

lowering the dissolved oxygen and diminishing the clarity of aquatic bodies, as a result of 

nutrient enrichment produced by many aquatic populations' development rates slow down as a 

result of oxygen deficiency and the habitat suffers. Eutrophication is a natural ageing process 

that affects lakes. The slow accumulation of silt and organic waste in the lake causes it. Low 

nutrient availability and plant productivity characterize a young lake. These oligotrophic lakes 
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gradually absorb nutrients from their drainage basin, allowing aquatic life to flourish. The 

increased biological productivity makes the water murky with phytoplankton in the long run. 

The lake becomes eutrophic as the decomposing organic matter depletes oxygen. Algal blooms 

die and deteriorate, resulting in gloom, odorous clumps of rotting waste, and a decrease in 

oxygen levels. The amount of the sunlight available to power photosynthetic reactions, as well 

as the concentration of nutrients required for development, are all elements that influence the 

rate of production of algae. The amount of light available is proportional to the water's 

transparency, which is a measure of the concentration of eutrophication. 

The use of mathematical modelling in the research and analysis of the impacts of eutrophication 

on aquatic populations has proven to be quite beneficial. In [1], the researchers suggest 

integrating the two models to create and study a biological idea of three aquatic species, two 

of which are competing competition with one another and one of which is a prey-predator. In 

[2], the researchers put forth mathematical model to investigate the fish population 

survivability or mortality while taking into the account of impact of both directly and indirectly 

nutrient recycling under the unfavorable impacts of eutrophication. In [4], a mathematical 

model is suggested in this research to investigate the impact of declining dissolved oxygen on 

the coexistence of interactive planktonic ecosystems. In [6], authors provide a model that takes 

into account interactions between several sea grass species and is based on the norms of plant 

clonal proliferation.  In [7], researchers considered five connected ordinary differential 

equations are formulated the model. The steady-state dynamics of the model are investigated 

by using qualitative concept in differential equations.  

In [8], the authors have analyzed the topic through a weighted graph with only two cycles; the 

stability is derived in order to comprehend the behavior of possible cleaners. Numerical 

simulation is used to validate the model. In [9], mathematical models are developed for various 

populations to examine the impact of environmental contaminants and rainfall intensity. In 

[10], the reduction in dissolved oxygen in a water body caused by the discharge of organic 

waste from residences and industries is investigated using a nonlinear mathematical model. 

The effect of low amounts of dissolved oxygen on the presence of living organisms is examined 

in such an aquatic system. In [11], the model analysis demonstrates that the simultaneous 

impacts of pollution and nutrient enrichment result in a significantly greater fall in DO 

concentration than when only one factor is found in the body, increasing uncertainty over the 

existence of DO-dependent species. In [12], the study focuses on a nonlinear model for the 

high nutrient flow through domestic sewage and the precipitation runoff from farming areas 

that causes an algae growth in a reservoir. Additionally, it has been shown that the optimum 

amount of dissolved oxygen decreases and that of detritus grows when the rate of ingestion of 

cumulative discharge improves. It is crucial to model the dynamic shifts inside the algae species 

in aquatic reservoirs. Realistic modelling is extremely difficult, though, because of the diversity 

and highly nonlinear of hydrological factors and associated underlying mechanisms [13]. 

Under some environmental conditions, naturally existing algae can multiply, leading to the 

deoxygenation of saltwater or the release of harmful substances (phycotoxins), which can harm 

both wild and farmed fish and shellfish as well as human consumers [14]. The authors findings 
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shed light on how fish management and catchment-level restoration strategies might work 

together to protect and improve water quality [15]. The findings suggest that approaches for 

nutrient reduction, rather than planktonic bloom monitoring, should then be developed to reach 

beyond unique conditions and across a river-estuary-ocean spectrum, taking into account the 

possibility that extreme nutrients and fresh-water phytoplankton blooms could be transmitted 

to ground water shores, shorelines, and occasionally even waterways that are susceptible to 

poor quality of water[17].  

 

2. MATHEMATICAL MODEL: 

In this model a(t) is the Growth rate of algae is directly proportion to the enrichment of 

nutrients(na) along with the oxygen deficit. n(t) is the increased growth of algae in an area with 

low oxygen due to nutrient concentration is also taken into account when calculating the total 

rate of increase of nutrients from detritus. c(t) is the rate of natural depletion of concentration 

C is considered to be v1, and growth of dissolved oxygen from various sources is supposed to 

be qc. Algae are thought to degrade at a pace that is proportional to both a and a2. Detritus is 

created when algae die and descend to the lake's bottom, therefore its growth rate must be 

proportionate to a. s(t) is a naturally occurring depletion of detritus brought on by the decaying 

process brought upon with bacteria or fungus activity in the lake. The density of debris in the 

lake affects how quickly nutrients grow because detritus is broken down by microbes and 

produces nutrients. F(t) rate of fish is Decay rate of fish by carrying capacity of fish. The 

mathematical model is developed using the relevant presumptions and parameters that were 

previously given. Figure 1 shows the connection network of a model. 

Figure 1: Eutrophication model diagram 

 

 

The five state variables listed above are included in the mathematical model of the governing 

system, which is organised as follows: 
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dn

dt
= q − π1δs + α2n − gn2 − − − − − (1)

da

dt
= θ1β1na − v1a

2 + α1a − − − − − (2)

dc

dt
= qc + v1c − λ1a − − − − − − − −(3)

ds

dt
= π2α3a + π3α4F − v3s − − − − − (4)

dF

dt
= λ2nF + α3F − λ3F

2 − − − − − −(5)

 

With initial conditions 

a(0)=a0>0, n(0)=n0>0, c(0)=C0>0, s(0)=s0>0, f(0)=f0>0 

β1,β2, θ1, θ2,θ2, δ1, δ are proportionality constant which are positive.  

αi
`s are depletion rate coefficients. 

λ1, β1, α1, α2, δ, α3, α4are proportionality constants which are positive.  

v1, v3are coefficients corresponding to crowding. 

π1, π2, π3 are functional proportionality constants. 

q is the cumulative rate of nutrient discharge into the exterior water body. 

qc is the rate of DO growth according to different sources (assumed as constant). 

 

3. BOUNDEDNESS AND DYNAMICAL BEHAVIOUR: 

The boundedness of the solutions of the model (1) – (5) is given by the following lemma 

Lemma1: The set 
m

mc

m

aq
c

q
FsanRFsan






1

4 ,0:),,,{(


 
is a region for 

all positive solution where 1 2 3 1 2min{ , , , , }m v v     

Proof: Using the first four systems (1) equations that we find, 

( )
d dn da dF ds

n a F s
dt dt dt dt dt

        

svFavnq 3312   ----------------- (6) 

)( sFanq m  
 

Here B=n-a+F-s 

qB
dt

dB
m   

Solve the equation (3) using integration factors 
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Replace the maximum values from equation with the fourth system's equation (4) 
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Integrating equation (5) we get, 
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This completes the proof of lemma. 

 

4. ANALYSIS OF EQUILIBRIA 

Let us now discuss about the stability of interior and boundary equilibrium points. The model's 

non-negative equilibrium points are as follows. 

Case 1: E1[n 0, a = 0, c = 0, s = 0, F ≠ 0] always exists 
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This model 1 equilibrium shows how when algae are present in the system, the detritus density 

will decrease to zero at equilibrium. It's also important to note that detritus is produced when 

algae die and that fish do not reduce the amount of nutrients in the system. 

Case 2:  E2[n ≠ 0, a = 0, c ≠ 0, s ≠ 0, F ≠ 0] 
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To check the effect of nutrients, concentration of oxygen, density of detritus as well as fish 

population on algae(phytoplankton) tend to zero. 

Case 3: E3[n ≠ 0, a ≠ 0, c ≠ 0, s ≠ 0, F ≠ 0] 
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5. LOCAL STABILITY ANALYSIS: 

To build the variational matrix to determine the behaviour of the equilibrium points' local 

stability. 

J =

[
 
 
 
 
α2 − 2gn 0 0 −π1δ λ2n
θ1β1a θ1β1n − 2v1a + α1 0 0 0

0 λ1 −v1 0 0
0 π2α3 0 −v3 π3α4

λ2n 0 0 0 λ2n + α3 − 2λ3F]
 
 
 
 

 

 

At  E1[n 0, a = 0, c = 0, s = 0, F ≠ 0] 

J1 =

[
 
 
 
 
α2 − 2gn 0 0 −π1δ 0

0 θ1β1n + α1 0 π2α3 0
0 λ1 −v1 0 0
0 π2α3 0 −v3 π3α4

λ2F 0 0 0 λ2n + α3 − 2λ3F]
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|J1 − αI| = 0 

22 4 bacb   

=> Unstable 

 At E2[n ≠ 0, a = 0, c ≠ 0, s ≠ 0, F ≠ 0] 

|J2 − αI| = 0 

 22 4 bacb    

 Unstable      
At E3[n ≠ 0, a ≠ 0, c ≠ 0, s ≠ 0, F ≠ 0] 

           

J3 =

[
 
 
 
 
α2 − 2gn 0 0 −π1δ λ2n
θ1β1a θ1β1n − 2v1a + α1 0 0 0

0 λ1 −v1 0 0
0 π2α3 0 −v3 π3α4

λ2n 0 0 0 λ2n + α3 − 2λ3F]
 
 
 
 

 

2 4 0b ac   

This shows that 3J
 is locally asymptotically stable and exists. 

                           

6. NUMERICAL SIMULATION 

Let's perform some numerical calculations, choosing the following values for the model's 

component values, to test the validity of this analysis about the stability of E3 of model (1) 

q = 5.0, π1 = 0.1, δ = 1.0, α1 =0.5, g=1.0, θ1 = 1.0, α2 = 0.5, v1 = 2.0, β1 = 1.0 

qc = 10.0, v3 = 2.0, λ1 = 0.25, π2 = 0.9, α3 = 0.5, α4 = 2.0, λ2 = 0.4, λ3 = 0.122, 

 α3 = 0.02  ----------- (6.1) 

The prerequisites for the existence of internal equilibrium are noted to E3  

(
***** ,,,, FScan ) satisfy the aforementioned set of requirements, and E3 is given by *n = 3.422, 

,961.1* a  ,7487.4* c  ,8877.3* s 3180.15* F  

The Jacobian matrix eigenvalues for this equilibrium, E3, are as follows: 

i0000.0000.2   

i0000.05753.6  , 

i0000.08698.3  , 

i9740.08142.1  , 
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i9740.08142.1   

In this case, there are three real eigenvalues, two complex eigenvalues, and all of the 

eigenvalues are negative or have a negative real portion. E3 is therefore locally asymptotically 

stable. 

By maintaining the other parameters constant (as given in Figures 2–5), we can see the impact 

of q on S, C and F.  

Figure 2. Variation of concentration of nutrients(C) varying cumulative rates of 

nutrient (q) availability with respect to time 

 

In figure 2, By maintaining the other parameters constant as stated in (6.1), it is noticed that 

the influence of the amount of input of nutrient q on the concentration of nutrients (c) causes 

the concentration of nutrients to increase. 

Figure 3. Variation of Detritus density (S) varying cumulative rates of nutrient(q) 

availability with respect to time 
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In figure 3, by holding all other parameters constant as stated in (6.1), it can be seen that the 

influence of the rate of input of nutrient q on the density of detritus (s) results in a declining, 

or tending to zero, density of detritus. 

Figure 4. Variation of Fish population (F) depending on the cumulative rate of nutrient 

(q) release throughout time 

 

In figure4, holding other parameters constant as stated in (6.1), it is noticed that the influence 

of the amount of input of nutrient q on Fish population (F) results in an increase in Fish 

population. While the concentration of dissolved oxygen reaches its maximum, the rate of 

nutrient introduction (q = 0), the density of detritus, and the density of algae all tend to zero. 

This result is inevitable since the nutrients produced by the detritus won't be sufficient to sustain 

the expansion of the fish, algal, and detritus populations. 

Figure 5. Time series graph for N-F variations with different values of q 
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The inner equilibrium point E3 is demonstrated to be stable by the numerical simulations. 

Figure 5 time series graphs for model includes nutrient concentration, growth rate of algae, 

dissolved oxygen, detritus and fish population is illustrated the findings to demonstrate the 

density of eutrophication rate increases and the density of fish population declines with varying 

amounts of nutrients (q). 

 

7. CONCLUSION 

This research proposes and investigates a non-linear mathematical model to study the 

eutrophication of water due to the overpopulation of fish, algae, and other biological species 

caused by an excessive supply of nutrients from water runoff, agricultural fields, industries, 

households and other sources. According to the observations, eutrophication process begins 

when the number of algae and other biological species in a body of water increase as the amount 

of nutrients in the water body goes up. 

Additionally, it has been studied that as detritus density rises, dissolved oxygen concentration 

falls i.e. the dissolved oxygen content is unaffected as oxygen produced by floating algae's 

photosynthesis enters the atmosphere. It has been observed through simulation study that if the 

rate of outside nutrient input is large, the content of dissolved oxygen in a water body may 

become insignificant. 

The model containing three equilibrium points  i.e., E1(n,0,0,0,F), E2(n,0,c,s,F) and E3(n*, a*, 

c*, s*, F*) for the model.  The first and second equilibrium points E1 and E2 respectively show 

an unstable state, whereas non trivial equilibrium point E3 is locally as well as asymptotically 

stable. The theoretical values and numerical simulated value are validated. This implies that 

the rise in fish population, algal, and detritus populations will not be supported more by 

nutrients that produces detritus. As the current study focuses on aquatic population (specifically 

fish population) in the presence of eutrophication, however, further studies can be carried out 

to by considering different aquatic species e.g. zooplankton, phytoplankton, types of fish 

population and so on . 
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