
 
 
 
 

DOI 10.17605/OSF.IO/CUYX7 

305 | V 1 8 . I 0 2  
 

ROBUST ESTIMATOR FOR FINITE POPULATION TOTAL 

 

AJWANG’ STELLAMARIS ADHIAMBO1, ROMANUS ODHAMBO OTIENO2, 

THOMAS MAGETO3 and DAVID ALILA4 

1Department of Mathematics(Statistics option) Programme, Pan African University, Institute for Basic Sciences, 

Technology and Innovation(PAUSTI), Nairobi, Kenya. 
2Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and Technology, 

Nairobi, Kenya. 
3Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and Technology, 

Nairobi, Kenya. 
4Department of Mathematics, Masinde Muliro University of Science and Technology, Kenya. 

 
Abstract 

The kernel regression estimator is a flexible and widely used nonparametric estimator that estimates a regression 

function. Statistical learning appears to be a promising field in which some algorithms resulting from machine 

learning are interpreted as statistical methods. Boosting is among the most studied machine learning techniques 

in this paper, a new improvement of the kernel density regression estimator is proposed, with a target of producing 

smaller estimates of the finite population total. The study was aimed at estimating the finite population total by 

incorporating the adaptive boosting technique to the nonparametric regression estimator. A numerical study using 

a simulated population was conducted in order to evaluate the performance of the proposed estimator and compare 

it with the existing one. The outcome of the proposed estimator is evaluated and presented. The simulation 

experiment were very promising; it shows that our modified kernel density estimator performs well in all cases, 

then the normal kernel density estimator. 

Keywords: Nonparametric Estimation, Kernel Density Estimator, Bias Reduction, Adaboost, Finite, Population 

Total 

 

1. INTRODUCTION 

In many intricate surveys, the available data regarding the study population can be utilized at 

both the design and estimation stages to construct accurate methods for finite population 

quantities, such as total or mean population, to increase the precision of estimators for those 

population quantities. In a number of statistical problems, nonparametric regression are 

commonly used to describe the relationship between the response variable and certain 

covariates (Parzen, 1962). 

Nonparametric model allows great flexibility since they do not make any assumptions hence 

are more powerful in prediction, nonparametric models have higher accuracy than parametric 

models hence they perform better. Furthermore, they can fit many kinds of functional form 

hence are flexible in nature. The most used approach is kernel smoothing, which dates back to 

(Rosenblatt et al., 1956) and (Parzen, 1962). 

Many efforts have been devoted to investigating the optimal performance of kernel density 

estimator for the finite population totals since it has been the most widely used nonparametric 

method in the last several decades. Boosting has received a lot of consideration from 

researchers recently. It was first suggested by (Schapire, 1990) and consequently developed by 
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(Freund, 1995), (Freund, Schapire, et al., 1996) and (Schapire & Singer, 1999). Boosting was 

explored as a way of improving the efficiency of a ’weak learner’. There are several boosting 

techniques. 

In this paper we have considered the adaptive boosting procedure, which was first proposed by 

Freund et al. (1996), as a way of producing robust estimator for finite population total with an 

aim of producing a robust finite population total, thereby minimizing the bias of the proposed 

estimator. 

 

2. KERNEL DENSITY ESTIMATOR (KDE) 

The kernel density estimation a non-parametric technique for estimating probability density 

(pdf). It is non-parametric because it does not assume any underlying distribution for the 

variable. The idea of nonparametric regression goes back to (Nadaraya, 1964) and (Watson, 

1964). 

Consider x1, x2, . . . , xn as an independent and identically distributed (iid) sample of n 

observations taken from a population P whose probability distribution function f(x) is not 

known. 

The kernel density estimate  f ̂(x) of f(x) is given by; 

 f̂(x) =  
1

nh
 ∑ K (

 x−Xi

h
) n

i=1           (1) 

where h > 0 is a smoothing parameter or bandwidth, which controls the degree of smoothness. 

K(x) is the kernel function, usually symmetric probability density function (pdf) satisfying 

∫ x K(x)dx =  0 (Wand & Jones (1995).  If K(x) is Gaussian distribution, then the  f ̂(x) 

estimated will be smooth and have derivatives of all orders. 

The kernel has the following properties according to (Silverman, 1986). 

 ∫ K(u)du = 1
∞

−∞
 

 ∫ uK(u)du = 0
∞

−∞
 

 ∫ u2K(u)du > 0
∞

−∞
 

 K(u) = K(−u) 

The bias of KDE is given as u2(K)h2 f”(x)/2 + O(h2) which is of order O(h2) and the 

variance Var (f ̂(x) =  
R(K)f(x)

nh
+ O (

1

nh
 ) which is of order O (1/nh).  

2.1 Nonparametric regression estimator for finite population total 

The nonparametric regression estimation provides a variety of techniques for 

estimatingm(xi)  = E[Yi|Xi = xi].  For xi  =  xj for any point in non-sample estimate ofm(xj). 

The idea is to obtain nonparametric estimates   m̂(xj) forj ∈  r. 
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For all the (xj) the estimator of the population total T ̂ is 

T ̂ = ∑ m̂(xj)                   j∈N           (2) 

This is true since it is expected that ∑ m̂(xj) j∈N ≈  ∑ Yj j∈N . Therefore, the estimator of the 

finite population total under nonparametric regression becomes; 

       (3) 

Where   wi =  ∑ wijr  

As with model-based estimators (see (Chambers, Dorfman, & Hall, 1992)) generally, this 

estimator ignores sampling probabilities (It also ignores stratum boundaries). Except for the 

selection of bandwidth, and possible transformation of the auxiliary, it is an automatic 

estimator.   T̂np Accumulates for non-sample values in the lieu of Yj . 

2.2 Adaptive Boosting Technique 

Boosting is the process of combining relatively imprecise prediction models to create a more 

accurate one. Adaptive boosting procedure is an algorithm proposing the use of machine 

learning, which was initially suggested by (Freund et al., 1996). Adaptive Boosting method 

employs an iterative method intended to strengthen weak estimators. 

3. BOOSTING THE KERNEL DENSITY ESTIMATOR FOR FINITE POPULATION 

TOTAL 

Consider a finite population of size 𝑁 of a study variable 𝑌𝑖 and the auxiliary variable, 𝑋𝑖  with 

associated values (𝑥𝑖 , 𝑦𝑖) respectively. 

In formulating the model, the dependent variable 𝑌𝑖  and the auxiliary variable 𝑋𝑖  will be 

considered as a nonparametric super-population model (linear), which is of the form 

  𝑌𝑖  =  𝑚(𝑥𝑖) +  𝑒𝑖,   𝑖 =  1, 2, . . . , 𝑛        (4) 

where 𝑒𝑖  ∼  𝑁(0, 𝜎2),  and 𝑚(𝑥𝑖) is the unknown mean function. The smoothing function of 

𝑥𝑖 will be estimated non-parametrically. The expectation and the covariance of equation 4 are 

presented as follows; 

 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥𝑖] =  𝑚(𝑥𝑖)  

= ∫ 𝑦 𝑓 (𝑥, 𝑦)𝜕𝑦             (5) 

  𝑐𝑜𝑣[𝑌𝑖, 𝑌𝑗  |𝑋𝑖  =  𝑥𝑖 , 𝑋𝑗  =  𝑥𝑗] = {
𝜎2(𝑥𝑖),   𝑖 = 𝑗,   𝑖, 𝑗 = 1,2, … , 𝑛 
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             

    (6) 
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Consider a finite population total T of size N (Dorfman, 1992),  given by 

𝑇 = ∑ 𝑌𝑖
𝑁
𝑖=1 = ∑ 𝑌𝑖

𝑛
𝑖=1 + ∑ 𝑌𝑖 𝑖∈𝑟              (7) 

where s is the sample and r is the non-sample. 

Therefore to estimate the finite population total T we have considered taking the expectation 

of the non-sampled part. 

   𝑇̂ = ∑ 𝑦𝑖𝑖∈𝑠 + 𝐸(∑ 𝑦𝑖 𝑖∈𝑟 )         (8) 

Resulting to    

= ∑ 𝑦𝑖𝑖∈𝑠 + ∑ 𝑚 ̂(𝑥𝑗) 𝑖∈𝑟          (9) 

Since  𝐸[𝑌𝑖 |𝑋𝑖]  =  𝐸(∑ 𝑦𝑖 𝑖∈𝑟 )     =  𝑚(𝑥𝑖).     

The smoothing function 𝑚(𝑥𝑖) will be estimated non-parametrically using adaptive boosting 

technique, AdaBoost. 

3.1 KDE - AdaBoost for finite population total 

Consider the auxiliary variable 𝑋𝑖  for  𝑖 =  1, 2, … , 𝑛. At the first step initialize the weights, 

that is, equal weight is assigned. 

𝑤1(𝑖) =
1

𝑛
 

The smoothing parameter ℎ1, ℎ2, … , ℎ𝑚 is then selected.  For this study, no procedure was 

employed while choosing the bandwidth. 

The boosting technique involves the re-weighting of data based on the loss function and so in 

the case of the kernel density estimation, such a measure is computed by comparing the first 

boosting step with the leave-one-out estimate (Silverman, 1986). 

At each step m, the weak estimator is computed as follows; 

 𝑓𝑚(𝑥) = ∑
𝑤𝑚(𝑖)

ℎ
  𝐾 (

𝑥−𝑋𝑖

ℎ
) 𝑛

𝑖=1        (10) 

where 𝐾() is the kernel density function, h is the smoothing parameter and 𝑤𝑚(𝑖) is the weight 

of observation 𝑖 at mth  step and  ∑ 𝑤𝑚(𝑖) = 1. 

The weight of each observation is then updated in each step as;    

𝑤𝑚+1(𝑖) = 𝑤𝑚(𝑖) + 𝑙𝑜𝑔 {
𝑓̂𝑚(𝑥𝑖)

𝑓̂𝑚
(𝑖)

(𝑥𝑖)
 

}      (11) 

where 𝑓𝑚
(𝑖)(𝑥𝑖) is the leave-one-out kernel density estimator ((Silverman, 1986)) given by; 

𝑓𝑚
(𝑖)(𝑥𝑖) =

1

(𝑛−1)ℎ
 ∑ 𝑤𝑚(𝑖)  𝐾 (

𝑥−𝑋𝑖

ℎ
) 𝑛

𝑖=1      (12) 

The final output is the product of all the density estimates is given by; 
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∏ 𝑓 ̂𝑚(𝑥𝑖)𝑀
𝑚=1              (13) 

The proposed boosted estimator therefore becomes 

  𝑚̂𝐴𝐵(𝑥) = ∑𝑌𝑖 𝑓 ̂𝑚(𝑥𝑖)         (14) 

Incorporating the boosted mean function to the nonparametric finite population total, the 

proposed regression estimator, under simple random sample without replacement, 𝑇𝑛𝑝𝐴𝐵 is thus 

given by 

  𝑇̂𝑛𝑝𝐴𝐵 =  ∑ 𝑌𝑖  𝑖∈𝑠 + ∑ 𝑚̂𝐴𝐵(𝑥𝑖) 𝑖∈𝑟  

=  ∑ 𝑌𝑖 𝑖∈𝑠 + ∑ 𝑌𝑖
1

𝑛
 𝑤𝑚(𝑖)  𝑖∈𝑟  𝐾 (

𝑥−𝑋𝑖

ℎ
)       (15) 

As can be seen from the following, it is expected that  𝑇̂𝑛𝑝𝐴𝐵 is less biased than the conventional 

estimator. 

3.2 Asymptotic bias of the proposed estimator,   𝑻̂𝒏𝒑𝑨𝑩  

By definition, the bias of the proposed estimator is derived as follows;                                    

𝐵𝑖𝑎𝑠 ( 𝑇̂𝑛𝑝𝐴𝐵) = 𝐸[ 𝑇̂𝑛𝑝𝐴𝐵 − 𝑇𝑛𝑝] 

 = 𝐸[(∑ 𝑌𝑖 𝑖∈𝑠 + ∑ 𝑚̂𝐴𝐵(𝑥𝑖) 𝑖∈𝑟 ) − ( ∑ 𝑌𝑖 𝑖∈𝑠 + ∑ 𝑌𝑗  𝑖∈𝑟 )] 

= 𝐸[∑ 𝑚̂𝐴𝐵(𝑥𝑖)  −  ∑ 𝑌𝑖
𝑁
𝑖=𝑛+1

𝑁
𝑖=𝑛+1 ]  

The bias therefore becomes 

 = 𝐸[∑ 𝑚̂𝐴𝐵(𝑥𝑖)  −  ∑ 𝑚(𝑥)𝑁
𝑖=𝑛+1

𝑁
𝑖=𝑛+1 ]      (16) 

Therefore, the model equation (2) can be re-written as 

𝑌𝑖 = 𝑚̂𝐴𝐵(𝑥𝑖) + [𝑚(𝑥𝑖) − 𝑚(𝑥) + 𝑒𝑖      (17) 

Equating 𝑚̂𝐴𝐵(𝑥𝑖) into the model in equation (14) we have  

= ∑
𝑤𝑚(𝑖)

𝑛
 𝑁

𝑖=𝑛+1 𝐾 (
𝑥−𝑋𝑖

ℎ
) 𝑌 𝑖     =  ∑

𝑤𝑚(𝑖)

𝑛
 𝑁

𝑖=𝑛+1 𝐾 (
𝑥−𝑋𝑖

ℎ
)

̂
= 𝑚̂𝐴𝐵 (𝑋𝑖)        

+
1

𝑛ℎ
 ∑   

𝑤𝑚(𝑖)

𝑛
 𝑁

𝑖=𝑛+1 𝐾 (
𝑥−𝑋𝑖

ℎ
) [𝑚(𝑥𝑖) − 𝑚(𝑥)]   

+
1

𝑛ℎ
 ∑

𝑤𝑚(𝑖)

𝑛
    𝑁

𝑖=𝑛+1 𝐾 (
𝑥−𝑋𝑖

ℎ
) 𝑒 𝑖                    (18) 

The equation (18) may be rewritten as 

=
1

𝑛ℎ
 ∑

𝑤𝑚(𝑖)

𝑛
  𝑁

𝑖=𝑛+1 𝐾 (
𝑥−𝑋𝑖

ℎ
) 𝑌 𝑖     =

1

𝑛ℎ
∑   

𝑤𝑚(𝑖)

𝑛
[𝑚(𝑥𝑖 + 𝑚1(𝑥) + 𝑚2(𝑥)] 𝑁

𝑖=𝑛+1  (19) 

Where  

𝑚(𝑥) =  ∑
𝑤𝑚(𝑖)

𝑛
 𝑁

𝑖=𝑛+1 𝐾 (
𝑥−𝑋𝑖

ℎ
)

̂
= 𝑚̂𝐴𝐵 (𝑋𝑖)        
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 𝑚1(𝑥) =  
1

𝑛ℎ
 ∑   

𝑤𝑚(𝑖)

𝑛
 𝑁

𝑖=𝑛+1 𝐾 (
𝑥−𝑋𝑖

ℎ
) [𝑚(𝑥𝑖) − 𝑚(𝑥)]   

And  

𝑚2(𝑥) =
1

𝑛ℎ
 ∑

𝑤𝑚(𝑖)

𝑛
    𝑁

𝑖=𝑛+1 𝐾 (
𝑥−𝑋𝑖

ℎ
) 𝑒 𝑖        

Hence now taking the expectation of equation (19) we have 

𝐸[∑   𝑚 ̂𝐴𝐵(𝑥𝑖) =𝑁
𝑖=𝑛+1

1

𝑛ℎ
 ∑     𝑁

𝑖=𝑛+1 [𝑚(𝑥𝑖 + 𝑚1(𝑥) + 𝑚2(𝑥)]   (20) 

But 𝐸[𝑒𝑖|𝑥𝑖] = 0.   Hence, it then follows that 𝐸[ 𝑚̂2(𝑥)] = 0 

Therefore, getting the expectation of 𝐸 [𝑚1̂ (𝑥) ],  letting 𝑍 =
𝑢−𝑋𝑖

ℎ
 and by Taylor series 

expansion we obtain  

𝐸 [𝑚1̂ (𝑥) ] =
𝑁−𝑛 

𝑛ℎ
(ℎ2 𝑓′(𝑥)𝑚′(𝑥)∫ 𝑍2𝐾(𝑍)𝑑𝑍  +

𝑁−𝑛 

2𝑛ℎ
(ℎ2 𝑓(𝑥)𝑚"(𝑥)∫ 𝑍2𝐾(𝑍)𝑑𝑍 +

𝑂(ℎ4) 

=
𝑁−𝑛 

𝑛ℎ
 ℎ2 𝐾2(𝐾) [ 𝑓′(𝑥)𝑚′(𝑥) +

1

2
 𝑓(𝑥)𝑚"(𝑥)]      (21) 

Letting 𝑄(𝑥) = 𝑓′(𝑥)𝑚′(𝑥) +
1

2
 𝑓(𝑥)𝑚"(𝑥). Equation (21) becomes 

=
𝑁−𝑛 

𝑛ℎ
 ℎ2 𝐾2(𝐾)𝑄(𝑥) + 𝑂(   ℎ4)       (22) 

Clearly, from the equation (22), the bias of the proposed estimator is of order  𝑂(ℎ4) which is 

lower than the bias of the normal kernel density estimator which is of order 𝑂(ℎ2), an 

indication of reduced bias. 

 

4. DESCRIPTION OF THE POPULATION 

The estimation of the finite population total and the corresponding bias was be carried out using 

five super-population totals; linear, quadratic, exponential, sine and jump models. 

The description of the set of data for the populations is summarized in equations 23, 24, 25, 26 

and 27 below. The auxiliary variable for each data set has been collected and incorporated in 

the estimators so as to improve on the precision of the estimation since the auxiliary variable 

is assumed to contain important information that is necessary for the estimation of the 

population total. 

We will perform simulation studies to illustrate the performance of the boundary bias robust 

estimator for the finite population total. Further, we will investigate the bias of the derived 

estimator. 100 values will be generated. For the sake of efficiency, we will assume that the 

errors terms are independent and identically distributed, with homogeneous variances, and that 

there is only one auxiliary variable x. 
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The superpopulation models below were be considered in the study;  

Linear model 

𝑦𝑖  =  1 +  2(𝑥𝑖  −  0.75)  +  𝑒𝑖         (23) 

Quadratic model 

𝑦𝑖  = 1 +  2(𝑥𝑖  −  0.75)2  +  𝑒𝑖       (24) 

Exponential model 

𝑦𝑖  =   𝑒𝑥𝑝{−4𝑥𝑖}  +  𝑒𝑖             (25) 

Jump model 

𝑦𝑖  =  1 +  2(𝑥𝑖  −  0.75)  +  0.25 +  𝑒𝑖      (26) 

Sine model 

𝑦𝑖  =  1 +  𝑠𝑖𝑛(2𝜋𝑥𝑖)  +  𝑒𝑖        (27) 

The auxiliary variable is assumed to be distributed uniformly in the interval N[0, 1] and The 

error term is defined as a standard normal variable on (0, 1), defined as 𝑒𝑖  ∼  𝑁(0, 1). Then, 

using the models above (in equations 23 : 27) we will compute the values for the response 

variable y. 

A random sample of 100 was randomly selected from the generated data through simple 

random sampling without replacement. 

5. SIMULATIONS 

In this work we investigated how well the Adaptive boosting technique performs for two 

iterations, I.e m=2. The Tables 1, 2, 3, 4 and 5 and figure 1 below illustrate the behavior of the 

proposed finite population total estimator for various super-population models. 

Table 1: Finite population total Estimate for linear model 

 𝑻̂𝒏𝒑 𝑻̂𝒏𝒑𝑨𝑩𝟏  𝑻̂𝒏𝒑𝑨𝑩𝟐  

n=20 51.60925 43.17438 43.15549 

n=35 50.27206 44.79664 44.17372 

n=50 48.88752 45.47158 44.7088 

n=85 46.35591 44.93168 44.7398 

Table 2: Finite population total Estimates for Quadratic model 

 𝑻̂𝒏𝒑 𝑻̂𝒏𝒑𝑨𝑩𝟏  𝑻̂𝒏𝒑𝑨𝑩𝟐  

n=20 144.1784 120.2492 120.2031 

n=35 140.3838 124.8412 123.1222 

n=50 136.458 126.8414 124.7286 

n=85 129.0207 125.4413 124.9201 
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Table 3: Finite population total Estimates for Exponential model 

 𝑻̂𝒏𝒑 𝑻̂𝒏𝒑𝑨𝑩𝟏  𝑻̂𝒏𝒑𝑨𝑩𝟐  

n=20 127.3841 126.2486 125.1751 

n=35 105.0021 104.6434 104.3088 

n=50 80.28447 80.47077 80.63151 

n=85 47.62623 47.71608 47.78484 

Table 4: Finite population total Estimates for Jump model 

 𝑻̂𝒏𝒑 𝑻̂𝒏𝒑𝑨𝑩𝟏  𝑻̂𝒏𝒑𝑨𝑩𝟐  

n=20 81.20815 67.54266 67.51416 

n=35 79.03095 70.09063 69.11925 

n=50 76.78285 71.16759 69.97648 

n=85 72.59102 70.33901 70.04221 

Table 5: Finite population total Estimates for Sine model 

 𝑇̂𝑛𝑝 𝑇̂𝑛𝑝𝐴𝐵1  𝑇̂𝑛𝑝𝐴𝐵2  

n=20 114.0265 94.15194 94.11835 

n=35 110.8455 97.78002 96.43586 

n=50 107.5239 99.38051 97.73005 

n=85 101.2687 98.34453 97.93547 

Clearly, from the above tables, the proposed estimator resulted to better finite population 

totals,  𝑇̂𝑛𝑝𝐴𝐵1
 and  𝑇̂𝑛𝑝𝐴𝐵2

for the five super-population models under study as compared to the 

𝑇̂𝑛𝑝. 

5.1 Performance of proposed estimator at different population sizes 

This paper considered a sample of size 100 which was partitioned, in order to study the 

behaviour of the proposed finite population total at different sample sizes. The 𝑇𝑛𝑝𝐴𝐵  after 

partitioning were as follows; 

  𝑇̂𝑛𝑝𝐴𝐵 =  ∑ 𝑌𝑖
20
𝑖=1 + ∑ 𝑚 ̂𝐴𝐵(𝑥𝑖)80

𝑖=1  

  𝑇̂𝑛𝑝𝐴𝐵 =  ∑ 𝑌𝑖
35
𝑖=1 + ∑ 𝑚 ̂𝐴𝐵(𝑥𝑖)65

𝑖=1  

  𝑇̂𝑛𝑝𝐴𝐵 =  ∑ 𝑌𝑖
50
𝑖=1 + ∑ 𝑚 ̂𝐴𝐵(𝑥𝑖)50

𝑖=1  

  𝑇̂𝑛𝑝𝐴𝐵 =  ∑ 𝑌𝑖
20
𝑖=1 + ∑ 𝑚 ̂𝐴𝐵(𝑥𝑖)80

𝑖=1  
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  𝑇̂𝑛𝑝𝐴𝐵 =  ∑ 𝑌𝑖
85
𝑖=1 + ∑ 𝑚 ̂𝐴𝐵(𝑥𝑖)15

𝑖=1  

The figures below illustrate the comparison of the proposed estimator, 𝑇𝑛𝑝𝐴𝐵, after the 

application of the AdaBoost. The results, clearly shows that the boosted finite population, 

𝑇𝑛𝑝𝐴𝐵,  outperformes the  𝑇̂𝑛𝑝. It can be seen that the overall finite population totals of the 

suggested estimator remain at their lowest throughout, both on the first and second boosting 

for different sample sizes. 

 

Figure 1: Plot of the Finite population Total for the five population models at different 

sample sizes n 

It is clearly visible from Figure 1 that the 𝑇̂𝑛𝑝 was reducing with increasing n for all the 

superpopulation models.  However, both TnpAB1 and TnpAB2 were increasing with increasing n 

upto a point, followed by a decrease after n = 50 for linear, Quardratic, jump and Sine models. 

The exponential model resulted into a reducing finite population total throughout. 

 

6. CONCLUSION 

From the summary tables and the figures above, it can be seen clearly that the proposed 

estimator  𝑇̂𝑛𝑝𝐴𝐵 has a bias of order 𝑂(ℎ4  )  which converges faster. Moreover, it results to the 

finite population total  𝑇̂𝑛𝑝𝐴𝐵 with a very smaller estimator both on first and second boosting 

as compared to the normal finite population total,  𝑇̂𝑛𝑝. 
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