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Abstract  

Electronic health records (EHR) have become more prevalent as a result of the quick development of information 

technology and Internet technology. This research paper focuses on introducing a novel deep learning approach 

for classifying the obtained information from feature selection process. The electronic health care records are 

considered as most important data that has to be protected from anonymous access.  The novel CGRBFN model 

provides an additional cyber security system to product the anonymous access of EHR. The first stage of this 

research work talks more about removal technique involved for removing irrelevant information from collected 

EHR and also deals with noise removal techniques and null value entries. The Conjugate Gradient boosting 

architecture used in the proposed CGRBFN algorithm is chosen based on the attributes or features collected. The 

cryptographically approach based on block chain technology is used to improve the security of the proposed 

algorithm. The accuracy, precision, recall and f-measure of the EHR categorization analysis are made. The 

obtained accuracy for the two dataset MIMIC3 and CDSS are 0.939% and 0.9% respectively. The produced 

accuracy is more compared with other existing algorithms. 

            

1. INTRODUCTION 

The creation of quantitative models for patients that may be used to forecast health status and 

to aid in the prevention of disease or disability is one of the main objectives of precision 

medicine. Electronic health records (EHRs) have enormous potential in this regard for 

quickening clinical research and predictive analysis. Recent research has demonstrated that the 

secondary use of EHRs has improved patient recruitment for clinical trials, type 2 diabetes 

subgroup identification, the detection of comorbidity clusters in autistic spectrum disorders, 

and data-driven drug effects and interaction prediction. Unfortunately, clinical decision support 

systems or workflows have not reliably incorporated predictive models and tools based on 

contemporary machine learning techniques. 

Due to its high dimensionality, noise, heterogeneity, sparsity, incompleteness, random errors, 

and systematic biases, EHR data is difficult to represent and model. Even EHR data is most 

confidential and it is to be protected from anonym’s entries. Additionally, several terminologies 

and codes might be used to express the same clinical profile. For instance, a patient with "type 

2 diabetes mellitus" can be recognized by laboratory hemoglobin A1C readings greater than 

7.0, the inclusion of the ICD-9 code 250.00, the mention of "type 2 diabetes mellitus" in the 

free-text clinical notes, and other factors. Machine learning techniques have found it 
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challenging to recognize patterns that result in predictive clinical models for practical 

applications. 

The selection of features and data representation are key factors in predictive algorithms' 

success. With EHRs, its usual practice to have a domain expert provide the patterns to look for 

the learning problem and the objectives to ad hoc specify clinical variables. Even if it is 

sometimes appropriate, supervised defining of the feature space scales poorly, generalizes 

poorly, and leaves room for the discovery of new patterns and features. Data-driven strategies 

for feature selection in EHRs have been proposed to address these drawbacks. The fact that 

patients are frequently represented as a 2-dimensional vector made up of all the data descriptors 

existing in the clinical data warehouse is a limitation of these methods. 

The choice of features and data presentation are crucial to the effectiveness of proposed 

prediction algorithms. Having a domain expert provide the patterns to look for the learning 

problem and targeting to specify clinical variables in an ad hoc manner is a frequent technique 

used in EHRs. Although it may be useful in some circumstances, the supervised formulation 

of the feature space scales poorly, generalizes poorly, and leaves room for the discovery of new 

patterns and features. Data-driven approaches for feature selection in EHRs have been put out 

as a solution to these drawbacks. These techniques have the drawback that patients are 

frequently represented as a 2-dimensional vector made up of all the data descriptors existing in 

the clinical data warehouse. 

Due to its sparseness, noise, and repetition, this representation is unsuitable for describing the 

hierarchical information that is latent or embedded in EHRs. By automatically detecting 

patterns and dependencies in the data to learn a compact and general representation that makes 

it easier to automatically extract useful information when building classifiers or other 

predictors, unsupervised feature learning attempts to overcome limitations of supervised 

feature space definition. Despite the popularity of deep learning (i.e., learning based on 

hierarchies of neural networks) and the success of feature learning with text, multimedia, and 

marketing, these methods have not been widely applied to EHR data. The demonstration of 

unsupervised deep feature learning is used for pre-process patient-level aggregation in EHR 

data produces representations that are easier for the computer to understand and dramatically 

enhances clinical predictive models for a wide range of clinical disorders. 

This proposed research work introduces a unique framework for representing patient’s future 

disease using a set of general attributes that are automatically inferred from a sizable EHR 

database using proposed deep learning techniques. The representation given to the research 

work follows framework of "deep patient." In particular, a deep neural network built from a 

stack of demising auto encoders was employed to process EHRs in an unsupervised manner 

that recorded consistent patterns and stable data structures that, when combined, make up the 

deep patient representation. 

Deep patient is easy to use for a variety of predicting applications, both supervised and 

unsupervised, and is domain free (i.e., not connected to any single task because trained over a 

huge multi-domain dataset). In a large-scale real-world data experiment, researcher can use 
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deep patient to predict patients' future diseases and demonstrate that deep patient consistently 

outperforms both the original EHR representations and common feature learning models. This 

demonstrates the efficacy of the proposed learning algorithm and accuracy of prediction 

process.  

 

2. LITERATURE REVIEW  

The issue of effectively obtaining phenotypes from longitudinal patient EHRs is known as 

electronic phenotyping. Hripsak et al. [7] noted that because there are numerous difficulties 

when dealing directly with raw EHR, this is a crucial step before we can undertake any data-

driven applications (such as comparative effectiveness study [13], predictive modelling [14], 

etc. (Such as the ones we listed in the introduction). The works that have already been done 

will be outlined below in accordance with the various patient EHR representations. 

Representation based on vectors: With this technique, a vector is created for each patient. The 

value on each dimension represents the summary statistics (e.g., sum, average, max, min, etc.) 

of the related medical event in a certain time period. Its dimensionality is equal to the number 

of distinct events that appeared in the EHR. Each phenotype in a vector-based representation 

which is typically taken to be a linear combination of these unprocessed medical events, and 

the combination coefficients for generating some sort of optimization approaches [15]. This 

representation's flaw is that it disregards the temporal connections between such occurrences. 

Representation based on tensors: Using this technique, an EHR tensor is created for each 

patient. Each mode of the tensor denotes a particular kind of medical entity (e.g., patients, 

medications or diagnosis). The summary co-occurrence statistics of the various occurrences in 

the appropriate dimensions will be the entry values. A nonnegative tensor factorization-based 

method for phenotypic extraction from such EHR tensors was suggested by Ho et al.. This 

approach looked at how various medical entities interacted with one another. The drawback is 

that they did not yet account for the temporal linkages between events. Representation based 

on sequences. According to the time stamp of each event, this technique creates an EHR 

sequence for each patient. The identification of temporal patterns as phenotypes can then be 

accomplished using common pattern mining techniques [17, 18]. One issue is that this approach 

typically returns a vast number of patterns due to the considerable diversity among patient 

EHRs (also known as the "pattern explosion" phenomenon"). Determining which phenotype is 

clinically beneficial is really tough. 

Visualization of Temporal Matrix: With one dimension representing time and the other 

representing medical events, this method displays the patient EHRs as temporal matrices. A 

phenotyping strategy was put forth by Zhou et al. [9] by combining medical occurrences with 

comparable temporal trends. They did not, however, take into account the temporal connections 

between these events. To find shift-invariant patterns across patient EHR matrices, Wang et al. 

[11] offered a convolutional matrix factorization approach, but they were unable to identify the 

ideal pattern lengths and had to enumerate all feasible values. This study proposes an approach 

that uses temporal matrix representation. Our method can automatically detect significant 

phenotypes and weigh them in the prediction phase thanks to the clever CNN structure. And 
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the temporal fusion approach efficiently balances the varied genotypes with varying window 

widths. 

A group of machine learning techniques known as "deep learning" make use of model 

architectures made up of numerous non-linear transformations in an effort to simulate high-

level abstractions in data. Deep learning models have shown outstanding outcomes in computer 

vision-based technique and speech recognition applications during the last few years. A popular 

deep learning model is convolutional neural networks (CNN), which is considered as basic 

model for dividing the model into various levels. CNN is a neural network that uses multiple 

layers with convolution filters applied to local features and can take advantage of the 

underlying structure of data (for example, the 2D structure of image data). Each processing 

unit responds to a tiny portion of input data. 

CNN models were initially developed for computer vision, but later it was discovered that they 

were also useful for retrieving search queries and word embedding learning. Since Collobert et 

alwork .'s on token-level applications, CNN has been applied to text mining systems for a 

variety of purposes, including document categorization, sentence modelling, and mining for 

product features. Only static content can be handled by traditional CNN (e.g., images and 

documents). Since the patient's condition changes over time, our EHR for the patient is 

longitudinal. Including the rich temporal data into CNN in order to analyses patient HER will 

solve the discusses problem. Action recognition and object localization from video sequences 

are two examples of works that have been presented to capture the temporal information in 

dynamic circumstances. These techniques typically employ distinct stacks of video frames as 

input to the network, and they attempt to fuse these stacks of movies using various fusion 

algorithms on various CNN architectural layers.  

The prediction process for upcoming clinical events from historical EHR data, many data 

sources and modelling techniques have been investigated with considering accuracy as one of 

the constrains. Krishnan et al. (2013) developed a series of studies using regularized logistic 

regression to predict diabetes from EHR claims data with varied lengths of the patient history 

window and prediction window. Tran et al. used regularized logistic regression and boosting 

models to predict preterm births from medication and procedure associated data. Deep learning 

techniques have excelled in offering broad approaches to integrate time series and structured 

variables in clinical data for model structures, according to empirical evidence. Elman RNN 

and LSTM were proven to perform well for vital signs, although CNN and LSTM are 

particularly good at encoding temporal information. 

Clinical diagnostics are successfully performed using deep CNNs and it was demonstrated by 

Brummel et al. (2017) that a hierarchical model with attention and GRU cells functions 

effectively with discharge notes, despite the fact that their purpose is ICD assignment of the 

present encounter rather than event prediction. Fiterau et al. (2017) proposed techniques to 

explicitly describe interaction between static information (such as age, gender, etc.) and 

sequential inputs for integrating mix-type inputs. Although it has been suggested that simply 

concatenating static covariates to sequential covariates is inefficient for learning and prone to 
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overfitting, static covariates are added to the input of the gates functions in LSTM and provided 

as parameters to the convolution function throughout time in CNN. 

Clinical intervention integrating structured data and notes was anticipated by Suresh et al. 

(2017). Latent Dirichlet Allocation was used to convert clinical narrative notes into a 50-

dimensional vector of topic proportions for each note, and static factors were duplicated across 

time. Thereafter, all inputs were joined together. Their empirical findings demonstrated that, 

given the identical input, the LSTM/CNN-based model significantly outperformed the logistic 

regression baseline. In their research, Tran et al. likewise employed free-text data, but they 

merely retrieved uni-grams from the notes after deleting stop-words. Choi et al. (2017) used a 

hierarchical structure from the medical term ontology via an attention method to provide 

auxiliary information. The goal is to address the small sample problem for some low-level 

codes. 

Although their empirical findings appear to suggest that for some tasks, merely moving up to 

higher level codes or using an RNN with GloVe embeddings can produce results that are 

equivalent, Pyysalo and Ananiadou (2013) trained a set of word2vec embedding using PubMed 

data with the purpose of learning clinical text representation. In addition, Wu et al. (2017) 

presented StarSpace as a framework for general-purpose representation learning. The sum of 

the embeddings of the features that make up an entity is used to represent it. These embeddings 

are trained by optimising a loss function that contrasts pairs of related entities with sampling 

negative pairings. Users define the "label" to assess similarity; for example, a sentence and an 

article topic are similar pairs, whereas other themes are unfavourable pairs. The task of 

information retrieval ends up being the most pertinent to the goal of note representation.  

 

3. PROPOSED METHODOLOGY 

The electronic healthcare record collected from various resources such as MIMIC3 and CDSS 

contains many irrelevant records, which as to be cleared for future discomfort. The feature 

selection process followed after the pre-processing technique improves the quality of data. The 

procedure followed after the feature selection is classification process in analyzing stage. The 

visualization process remains the final part of the research work, where the output of the 

discussed patient future disease is shown. The detailed representation of the proposed model is 

given in the figure 1.  
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Figure 1: Proposed TFTCNN process diagram 

3.1. Electronic Healthcare Records 

The MIMIC3 Clinical Dataset records 61,532 ICU stays divided among 58,976 hospital 

admissions, themselves distributed among 46,520 subjects from Beth Israel Deaconess Medical 

Center, and maintained by MIT [16]. Records primarily consist of vital sign data, lab results, 

and the time of observation. This dataset, however, has multiple issues which need to be 

addressed. Events are irregularly sampled, include outlier data values, and can be entirely 

missing for some features and patients. Additionally, the same feature can be assigned multiple 

codes, which further complicates any processing.  

Clinical Decision Support System CDSS Dataset are 4920 patients’ history collected hospital 

admission records. The record set maintains 133 attributes denoting various symptoms and 

meditation given for the particular disease. The same record of 41 for testing purpose are 

divided from 4920 records of patients.     

3.2. Proposed Temporal Fusion Transformer Convolution Neural Network (TFTCNN)  

The identification process followed during the future disease occurrence in human body is the 

most important and final stage of this research work. The collected MIMIC3 and CDSS dataset 

from various resources are different from each other with few attributes. Earlier stage of this 

research work focuses on removing the irrelevant information from collected dataset as well as 

to improve the efficiency and quality of the collected dataset. The procedure followed after 

enhancing the quality of the pre-processed data is mostly avoided by many researchers, but in 

this research work feature extraction and selection process is carried out with proposed 

Conjugate Gradient and Radial Basis Function Networks (CGRBFN) algorithm. 

The classification stage of the research work uses a unique way of implementing Temporal 

Fusion a time series Prediction procedure with the combination of Deep Learning technique. 

The convolutional neural network (CNN) deep learning technique implemented along with the 

time series fusion transformer plays a major role in reducing the classification time as well as 

to improve the accuracy of prediction process. The steps followed in the convolutional neural 
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network-based techniques are divided into single frame, early fusion, late fusion and slow 

fusion with time series temporal transformer technique.  

The fundamental building blocks specialize in identifying various features or trends in the time 

series, including a temporal multi-head attention block that distinguishes the long-term patterns 

the time series might include and priorities the most important patterns. Each head of attention 

may concentrate on a distinct temporal pattern. Long short-term memory (LSTM) blocks are 

used to recognize relationships of time steps with their surrounding values (whereas long-range 

relationships are left to the attention heads). LSTM sequence-to-sequence encoders/decoders 

to summaries shorter patterns. Gated residual network (GRN) blocks, are used to remove 

unnecessary or unneeded inputs during processing of data. In order to avoid overfitting, nodes 

can potentially be dropped arbitrarily. Because it combines these specialized layers to 

understand the interactions along the time axis, the temporal fusion decoder earns its name. 

The used attributes are 32 in numbers, which is very closely associated with the future disease 

prediction patterns in patients. The feature selection process implemented during the procedure 

allows the dataset to scrutinize the collected data into more comfortable data for the prediction 

process. The procedure followed during the temporal fusion transformer convolutional neural 

network (TFTCNN) is very unique in implementing time series problem solving technique in 

various convolutional levels.  

3.3. Temporal Fusion  

EMR data differ greatly in temporal extent from images and documents, which can be 

considered as still, and the temporal connectedness is also crucial for the prediction. Each data 

sample is viewed as a collection of brief, predetermined sub-frames as in the figure 1, which is 

differentiated with different color. Since each sub-frame consists of a number of consecutive 

time periods, implementation can increase the model's connection in the temporal dimension 

to uncover temporal properties. 

The temporal fusion can be provided with three main groups for connectivity pattern 

categories, which is given below. The three suggested models all rely on fusing data across 

temporal domains collected from different attributes, this can be done either early in the 

network by extending the first layer convolution filters or late by placing two distinct single-

frame networks and fusing their outputs later in the processing of convolutional layers 

attributes.  

Single-frame: The single frame temporal fusion explains about the static matrix combinations 

of different attribute record collected from the Electronic Healthcare Record. The procedure 

followed for the normalization layer is something different from other layer formations. The 

understandability of the layers are very clear in static representation and the accuracy of the 

single frame classification is better compared with other layer formations. The single frame 

design is mostly deployed for improving the accuracy of the overall proposed model.  

Temporal Early Fusion: The Early Fusion addon instantly merges data at the fundamental 

event feature level from across an entire time window. The addition or combining every instant 
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together makes the layer formation as very successful one. Each attribute is instant is associated 

with final frame formation and connected with the proposed convolutional method for 

acquiring the necessary information. This is accomplished by expanding the filters on the 

single-frame model's first convolution layer to cover the number of sub-frames k. 

Temporal Late Fusion: The late fusion model tries to connect the entire final layer into the 

complete frame. The procedure follows in later fusion creates the connection for final instance 

to every frames in the frame sequence. The collection of single frame networks are placed 

together as fully connected layers and used as a single stream of message passing of 

information sharing. The analyzing of the layers is identifying with the single point of contact 

and makes the late fusion procedure as successful one. Through the layers connections happens 

after the layer’s separations and instance identifications, it is considered as delayed fusion or 

late fusion. But late fusion makes it simple to identify trends in each sub-frame. 

3.4. Temporal Transformer  

A unique encoder-decoder model called Transformer is based on the attention mechanism and 

completely eliminates recurrent neural networks, which are capable of efficiently computing 

the sequence. The basic mechanism behind the temporal transformer is to take the combination 

of the layer frames into next level, which is understandable and easily accessible for 

convolutional network algorithms. The canonical transformer uses a stacked encoder- and 

decoder-layer encoder-decoder arrangement. Encoder layers are divided into two sublayers, 

self-attention and a position-wise feed-forward layer.  

A vector is created by the encoder and fed to the decoder. Encoder-decoder attention and a 

position-wise feed-forward layer come after the three sublayers that make up the decoder 

layers, to avoid absorbing knowledge about upcoming output positions during training, the 

decoder uses masking in its self-attention. Transformer uses residual connections surrounding 

each of the sublayers, followed by layer normalization, to speed up training speed and 

convergence. Unlike batch normalization, which creates new dependencies during training, 

layer normalization calculates the normalized statistics from the total of inputs to the neurons 

in the hidden layer.  

It has a positive impact on convolutional neural network and can increase the model's capacity 

for generalization. It has also been applied to models with transformers. Prior to the first layer, 

positional encoding based on sinusoids of various frequencies is added to the input elements 

of the encoder and decoder. The proposed TFTCNN that sinusoidal position encodings would 

aid the model's generalization to sequence lengths not encountered during training, in contrast 

to learnable or absolute position representations. The sine and cosine functions can be used to 

express the positions of the elements in a time series using the following formula: 

PE(pos, 2i) = sin(
pos

108i/dmodel
)   (1) 

PE(pos, 2i + 1) = cos(
pos

108i/dmodel
)   (2) 
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where i is the measurement and pos is the position. In other words, a sinusoid corresponds to 

each dimension of the positional encoding. Several attention heads are used by self-attention 

sublayers. Results from each head are combined to create the sublayer output, which is then 

processed using a parameterized linear transformation. Each attention head computes a new 

sequence z = (z1,..., zn) of the same length from an input sequence x = (x1,..., xn) of n elements. 

The weighted total of the linearly processed input elements is determined for each output 

element zi: 

Zi =  ∑ αij(xjW
v)n

j=1      (3) 

Each weight coefficient αij is computed using a softmax function: 

      αij =  
eij

∑ exp eik
n
k=1

                (4) 

In addition, eij is computed using a compatibility function that compares two input elements: 

eij =  
(xiWQ)(xjWK)T

√dz
     (5) 

where WQ, WK, and WV are parameter matrices and xiW
Q, xiW

K, and xiW
V produce the three 

abstractions Q, K, and V that are useful for calculating self-attention. Simply expressed, Q 

stands for the query vector, K for the vector representing the correlation between the 

information being questioned and the context, and V for the query vector. The compatibility 

function, which determines how similar two items are and permits effective computing, was 

decided to use scaled dot product. 

3.5. Visualization and comparison  

Visualization and comparison are considered as final stage of this research work, were final 

collected weighted and information through proposed TFTCNN is shown with various 

confusion matrices. The true positive, True Negative, False Positive and False Negative rate 

calculations are given for finding out the performance of the proposed TFTCNN based model. 

The accuracy, precision, Recall and F-score are calculated from confusion matrices.  

The same strategy used for testing the efficiency of the proposed model is tested with different 

existing algorithms for checking the efficiency of the existing algorithms. The comparison 

between proposed and existing algorithms are calculated with the measurements tabulated in 

results and discussion session. The following are few existing algorithms used in this research 

work for making comparison with proposed TFTCNN neural network model. 

SVM (Support Vector Machine): The mathematical technique of creating a collection of 

hyper-planes in the high-dimensional space described by the predictors is known as a support 

vector machine. Generally speaking, greater margins could equal smaller generalization errors, 

hence the optimal separation can be attained if the hyper-planes have the greatest distance 

(functional margin) from the closest training points of any class. 

KNN (Nearest Neighbor): A query point is assigned the class that has the most representatives 

in its geometrical hyper-space "vicinity" in the neighbors-based classification approach, which 
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computes the labelling of each point in the parameters' hyper-space based on a simple majority 

vote of the nearest known (previously labelled) neighboring points. The most popular method 

is k-NN, where "k" is the quantity of nearby already-labeled sites that will participate in the 

"voting" process. Various applications of this technique use different choices of k, as well as 

different methods of calculating the geometric point-to-point distance (such as Euclidean, 

"Manhattan," etc.), as well as different weights for the contributions of the neighbors, such as 

proportional to the inverse of the distance. 

NB (Naive Bayes):  The use of Bayes' theorem is the foundation of naive Bayes approaches. 

The assumption of independence between every pair of attributes is referred to as the "naivety" 

of the technique. Naive Bayes classifiers have been effective in numerous real-world contexts, 

including document classification and spam filtering, despite their ostensibly overly simplistic 

approach. In comparison to other approaches, naive Bayes classifiers are very quick and require 

minimal training data to predict the essential parameters [7]. As a one-dimensional distribution, 

each distribution can be separately calculated (decoupling). This aids in addressing problems 

brought on by the "curse of dimensionality" (various phenomena that arise when analyzing data 

in high dimensional spaces). 

LR (Logistic Regression):  Despite its name, logistic regression is a linear model that is 

frequently employed for categorization. The terms "logit," "maximum-entropy classification 

(MaxEnt)," and "loglinear classifier" are frequently used in the literature to refer to logistic 

regression. The odds of the potential outcomes are modelled using a logistic function in the 

model. 

 

4. RESULTS AND DISCUSSION  

The Electronic Healthcare Records collected from two different sources such as MIMIC3 and 

CDSS consist of administrative information, Patient demographics information, Progress 

notes, medical histories, Vital signs, Medications, Allergies, Diagnoses, Lab test, Test results, 

Immunization dates and Blood Pressure. The collected dataset also has the information about 

the symptoms of Itching, Skin rash, Nodal skin eruptions, Continuous, sneezing, Shivering, 

Chills, Joint pain, Stomach pain, Acidity and Ulcers on tongue.  

The proposed TFTCNN is tested with existing algorithms such as Support Vector Machine, K- 

Nearest Neighbor, Naive Bayes and Logistic Regression. The performance of the proposed 

TFTCNN shows best performance compared with other existing models table 1.  
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Table 1: Performance matrices for proposed TFTCNN 

Model 

Performance 

MIMIC3 CDSS 

AUC MCC AUC MCC 

Support Vector Machine 0.610 0.336 0.400 0.225 

K- Nearest Neighbor 0.684 0.470 0.473 0.260 

Naive Bayes 0.607 0.330 0.406 0.120 

Logistic Regression 0.622 0.355 0.411 0.144 

Temporal Fusion Transformer Convolutional Neural 

Network (TFTCNN)  

0.647 0.397 0.436 0.186 

Area Under Receiver Operating Characteristic Curve (AUC): The area under a receiver 

operating characteristic is abbreviated as AUC ROC. The area under the ROC curve is one of 

the most used qualities functionals in binary classification issues. The explanation starts with 

the definition of new terminology using confusion matrices as follows 

TPR∗FPR

2
+ TPR ∗ (1 − FPR) +

(1−TPR)∗(1−FPR)

2
=

1+TPR−FPR

2
   (6) 

Matthews Correlation Coefficient (MCC): Instead, the Matthews Correlation Coefficient 

(MCC) is a more dependable statistical measure that only yields a high score if the prediction 

performed well in each of the four categories of the confusion matrix (true positives, false 

negatives, true negatives, and false positives), proportionally to the size of the dataset's positive 

and negative elements. 

MCC =
TP∗TP−FN∗FP

√(TP+FP)(TP+FP)(TN+FP)(TN+FN)
     (7) 

The Support Vector Machine (SVM) The SVM algorithm's objective is to establish the best 

line or decision boundary that can divide n-dimensional space into classes, allowing us to 

quickly classify fresh data points in the future. A hyperplane is the name given to this optimal 

decision boundary. SVM selects the extreme vectors and points that aid in the creation of the 

hyperplane. These extreme situations are called as support vectors, and consequently method 

is termed as Support Vector Machine. The iterations followed during SVM takes values for C 

= 1.0, Cache_size = 200, Class_weight = None, Coef0=0.0, degree = 3, gamma = ‘auto’, kernel 

= ‘rbf’, shrinking = True and Tot =0.001.  

K- Nearest Neighbor (KNN) The kNN algorithm, sometimes referred to as KNN or k-NN, is a 

supervised learning classifier that employs proximity to produce classifications or predictions 

about the grouping of a single data point. Although it can be applied to classification or 

regression issues, it is commonly employed as a classification algorithm because it relies on 

the idea that comparable points can be discovered close to one another. The attributes selected 

for the iterations are listed as patch_size = 30, metric = ‘Itching’, nearest_attributes = 5 and 

weights = ‘uniform’.   
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Naive Bayes Naive Bayes is a fantastic illustration of how the most straightforward answers 

are frequently the most effective. Despite recent developments in machine learning, it has 

shown to be not only quick, accurate, and dependable but also simple. It has been used 

successfully for many things, but it excels at solving natural language processing (NLP) issues. 

The Bayes Theorem is the foundation of the probabilistic machine learning method known as 

Naive Bayes, which is utilized for a variety of classification problems. The iterations carried 

out in the implementation uses attribute selection as priors = ‘none’.  

The final proposed Temporal Fusion Transformer Convolutional Neural Network (TFTCNN) 

is time series-based technique implemented with convolutional neural network idea for deter 

performance. The procedure used in the algorithm creates different frames and layer formations 

for better classifications procedures. The usage of attribute selected for classification procedure 

followed during the iterations as C= 1.0, Class_weight = None, dual = False, fit_intercept = 

True, intercept_scaling = 1, max_iteration=100, multi_class = ‘ovr’, n_jobs = 1, penalty = ‘12’, 

random_state = None, solver = ‘liblinear’, tot=0.0001, verbose = 0 and warm_start =False.  

This particular part of the results discusses about qualitative discussion of the TFTCNN-based 

model's efficacy with other existing classification models. The result shown that the higher-

order temporal event linkages can be completely utilized by the proposed framework to yield 

meaningful phenotypes. The differences between different approaches using each phenotype 

are observed. It is challenging to visualize the feature maps with deconvolutional neural 

networks due to model construction constraints. The technique used in the monitoring and 

visualization of the proposed TFTCNN clearly used for the analyzing neural activity.  

Table 2: Training data variations in prediction AUC and Standard Deviation for 

MINIC3 

Model 60% 70% 80% 90% 

Support Vector 

Machine 

0.4247± 0.111 0.5034± 0.096 0.5655± 0.075 0.6289± 0.052 

K- Nearest 

Neighbor 

0.4287± 0.106 0.5093± 0.098 0.5695± 0.075 0.6300± 0.051 

Naive Bayes 0.4424±0.117 0.5242± 0.099 0.5825± 0.072 0.6579± 0.053 

Logistic Regression 0.4372± 0.105 0.5319± 0.092 0.5973± 0.065 0.6685± 0.049 

Temporal Fusion 

Transformer 

Convolutional 

Neural Network 

(TFTCNN)  

0.4425± 0.107 0.5058± 0.088 0.5799± 0.065 0.6375± 0.052 

The AUC and Standard Deviation for the dataset MIMI3 and CDSS are divided into training 

and testing set, were table 2 and table 3 shows the significant difference in various stages of 

the training set. The variations of the dataset are divided into 60%, 70%, 80% and 90% for each 

dataset.   
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Table 3: Training data variations in prediction AUC and Standard Deviation for CDSS 

Model 60% 70% 80% 90% 

Support Vector 

Machine 

0.2242± 0.096 0.3029± 0.081 0.3650± 0.060 0.4284± 0.037 

K- Nearest 

Neighbor 

0.2285± 0.091 0.3091± 0.083 0.3693± 0.060 0.4298± 0.036 

Naive Bayes 0.2419±0.102 0.3237± 0.084 0.3820± 0.057 0.4574± 0.038 

Logistic 

Regression 

0.2367± 0.090 0.3314± 0.077 0.3968± 0.050 0.4680± 0.034 

Temporal Fusion 

Transformer 

Convolutional 

Neural Network 

(TFTCNN)  

0.2420± 0.092 0.3053± 0.073 0.3794± 0.050 0.4370± 0.037 

The prediction process identified for the proposed TFTCNN classification algorithm with other 

existing algorithms are shown in table 2 and table 3, which clearly shows the best performance 

in TFTCNN.  The top layer uses the output/activation of the neurons (after pooling) as features 

and gives the features weights. For the negative class and the positive class, respectively, the 

neurons whose output obtained the highest weights in the top layer. This allows to identify the 

places in the training set that the relevant neurons are highly activated in proposed TFTCNN.  

Table 4: Measurement for proposed TFTCNN 

Model Sensitivity Specificity F-measures 

Support Vector Machine 71.110 93.005 68.250 

K- Nearest Neighbor 83.200 93.706 73.100 

Naive Bayes 73.736 93.746 68.500 

Logistic Regression 68.370 92.970 67.925 

Temporal Fusion Transformer Convolutional 

Neural Network (TFTCNN)  

84.826 94.165 78.865 

Table 4 shows the result taken for measuring the sensitivity, specificity and F-measures for the 

proposed TFTCNN algorithm with other existing algorithms. The results are very clear to show 

the proposed TFTCNN algorithm shows the best result compared with other existing 

algorithms.  After applying the pre-processing technique on collected dataset the information 

is scrutinized as in table 4 
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Table 5: Accuracy for the proposed TFTCNN 

Model Accuracy 

MIMIC3 CDSS 

Support Vector Machine 0.802 0.722 

K- Nearest Neighbor 0.890 0.789 

Naive Bayes 0.885 0.796 

Logistic Regression 0.879 0.845 

Temporal Fusion Transformer Convolutional Neural Network 

(TFTCNN)  

0.939 0.900 

The accuracy description given for the described two different dataset are given in Table 5, 

which clearly shows the best performance in TFTCNN compared with other existing 

algorithms.  

 

5. CONCLUSION 

The most crucial record for identifying the future diseases that are likely to affect a patient is 

the electronic healthcare record gathered from their body. Several automated algorithms were 

used in the research's prediction process. The most common and efficient methods for solving 

problems are machine learning and big data analysis. This research work focuses on using 

machine learning techniques to identify the required attributes for the last stage of analysis. 

Following the data mining procedure's pre-processing technique is typically the feature 

selection or extraction step. Medical data sets gathered by MIMIC3 and CDSS are taken into 

account. Each record set's symptoms and essential characteristics are independently collected, 

and the suggested TFTCNN method is then used to predict the information. The end output is 

the mean and standard deviation for the notable dataset. The proposed TFTCNN algorithm is 

clearly analyzed for accuracy and time taken for the execution. The obtained accuracy for the 

two dataset used are more compared with the other existing algorithms.   
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