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Abstract 

In this scientific article, the problems associated with the interaction of a plane shock pressure wave on an elastic 

circular cylindrical panel are considered. A cylindrical panel fixed in a cylindrical screen is placed in a boundless 

ideal fluid. The transverse oscillations of the panel are described by the well-known finite deflection equations 

according to the theory of thin shallow shells. The problem of non-linear motion of an elastic panel under the 

action of a weak shock wave is a difficult task. To simplify the problem, the pressure of reflected and radiated 

waves is determined approximately without taking into account diffraction from boundary edges. Based on these 

simplifications, the basic formulas for a smooth cylindrical shell are derived. Nonlinear differential equations of 

motion of a cylindrical panel placed in an infinite ideal fluid are solved numerically using the Maple-17 program. 

The results of the change in the amplitude of the deflection and displacement of the middle surface of the panel of 

the cylindrical shell from time to time at different angle-β and coefficient λ are obtained. The graphs obtained show 

that the oscillations of the panel in an ideal liquid are close to aperiodic. This is due to its large damping. 

Keywords: task, plane, impact, wave, pressure, elastic, circular, cylindrical, panel, limitless, ideal, liquid, 

transverse. fluctuations. equations, non-linear, motion, diffraction, edges, differential, fluid, method, program, 

amplitude, deflection, displacement, surface, damping. 

 

INTRODUCTION 

The problems associated with the interaction of a plane pressure wave on an elastic circular 

cylindrical panel are considered [1-3]. 

A cylindrical panel, fixed in a cylindrical screen, is placed in a boundless ideal fluid. 

The transverse oscillations of the panel are described by the well-known finite deflection 

equations of the theory of thin shallow shells. 

The problem of non-linear motion of an elastic panel under the action of a weak shock wave is 

a difficult task. 

To simplify the problem, the pressure of reflected and radiated waves is determined 

approximately without taking into account diffraction from boundary ribs based on formulas 

derived for a smooth cylindrical shell. 

Statement of the problem and differential equations of nonlinear oscillations of a 

cylindrical panel. Let us investigate the case of non-linear vibrations of a cylindrical panel 

with length a and width b (Figure 1) 
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Figure 1: Elastically circular cylindrical shallow shell, placed compressible liquid 

When solving the problem, we will proceed from the nonlinear equations of the theory of 

shallow shells with respect to displacement w(x, y, t) and stress functions Ф(x, y, t). 
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Here: x, y are the coordinates along the generatrix and along the arc, t is the time, c is the speed 

of sound in the liquid, q (x, y, t) is the intensity of the transverse load[4-7]. 

R-radius, h-thickness, D =
Eh3

12(1−μ2)
 , μ - Poisson's ratio, E - modulus of elasticity of the material 

of the cylindrical shell. 

Equation (1.1) takes into account only the transverse inertia of the shell. Since taking into 

account the inertia in the middle surface of the shell has little effect on the nature of the motion. 

Boundary conditions of the problem: 

w =
∂2w

∂x2
= 0  for x = ±

a

2
  ;  w =

∂2w

∂x2
= 0 

for x = ±
a

2
  ;  w =

∂2w

∂x2 = 0 ;                                                 (1.2) 

Imagine the external load on the shell as follows: 

q = p − ρoh
∂2w

∂t2 − ρohε
∂w

∂t
                                          (1.3) 

Here: p- is the hydrodynamic pressure, ρо -is the density of the shell material, ε is the 

attenuation coefficient. 

The deflection of a gently sloping hinged cylindrical shell can be represented as: 

w(x, y, t) = f(t)cos
πx

a
 cos

πy

b
  ,      (1.4) 

where: f(t)  - is the time-dependent deflection amplitude. For this case, the solution of the 

second equation (1.1) with respect to the stress function Ф will be: 
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Here: σ1, σ2 - chain stresses resulting from the interaction of the shell panel with reinforcing 

ribs. The mean shear stresses are assumed to be zero. 

Considering that when the averaged edge approaches are equal to zero, we have the following 

condition to determine σ1, σ2: 
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(1.6) 

where:  u, v - displacement of the points of the middle surface in the direction of the x, y axes. 

Taking into account the ratios for the relative elongations of the middle surface ε1, ε2, we have: 

ε1 =
1

E
(

∂2Ф
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1
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Taking into account (1.4) – (1.8), we obtain expressions for chain voltages: 

σ1 =
E

1−μ2 [−
(πf)2

8a2
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π2R
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(πf)2

8a2
(μ + λ2) +

4f

π2R
 
μ2+2λ2+λ4

(1+λ2)2 ]                    

(1.9) 

Hydrodynamic pressure on the panel surface 

The pressure p(x, y, t) acting on the shell can be represented as: p = p1 + p2 + p3; here: p1is 

the pressure of the incident wave, p2 is the pressure in the wave reflected from the stationary 

non-deformable shell, p3is the pressure of the radiated waves due to panel oscillation. 

The screen is considered to be stationary. The moment of contact of the incident wave front 

with the shell is taken as the initial moment of time t = 0. 

The wave front is parallel to the generatrix of the cylinder, and its propagated direction 

coincides with the z axis (Fig. 1). At the initial moment of time, the panel is considered to be 

stationary: w(x, y, 0) = ẃ(x, y, 0) = 0́  

Let us consider the effect of a potential pressure wave on a cylindrical shell. 

Since a flat panel is considered (β = 30°, Fig. 1), we can assume that the pressure in the 

reflected wave pr(r, θ, τ)   does not depend on the angle θ, and the nature of its change in time 

is the same as at θ = 0. Then the specific dynamic transverse pressure acting on the surface of 
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the shell has the form: 

q = (p1 + p2) + p3 − ρoh
∂2w

∂t2 − ρohε
∂w

∂t
 = (2e−δτ −

1

1−2δ
e−δτ +

1

1−2δ
e−

1

2
δτ) ρ0H(… ) −

ρc2

R
[ẃ −
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                                                                                                                                      (1.10) 

where δ is a constant that determines the rate of pressure drop behind the wave front. 

Methods for solving the equation of motion of a cylindrical panel placed in an infinite 

ideal fluid 

To solve the problem, we apply the Bubnov-Galerkin method to the first equation (1.1) taking 

into account (1.4) and (1.5). Then we obtain the following equation for without dimensional 

deflection of the center of the panel ξ =
f

h
 : 

γ0ξ̈ +
γ1+ε0

k
ξ +̇

π4k2

16β4 (1 +
1

λ4) ξ3 − [
32

3(1+λ2)2 +
2

3
]

kξ2

β2 + [
1

(1+λ2)2 −
π2

β2 (
σ1

∗

λ2 + σ2
∗ ) +

π4k2

12(1−μ2)β4 (1 +
1

λ2)
2

−
γ1

2k
] ξ +

16

kπ2 σ2
∗ −

16

k2π2 p0
∗ Q(τ) +

γ1

4k
e−0.5τ ∫ ξ(τ1)e0.5τ1dτ1 = 0

τ

0
                                                     

                                                                               (1.11) 
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E
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 Initial conditions:    ξ(0) = 0  , ξ̀(0) = 0                     

          (1.13) 

Nonlinear differential equations (1.11) are solved numerically using the Maple-17 program [8]. 

Initial data: shell material duralumin. 

λ = 1;
1

2
;

1

3
;

1

5
;

1

7
;

1

9
; R = 0.125м; h = 0.002;  μ = 0.3; , k = 0.008, β =

π
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 ; ρdra =

2800
кг
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 ;  Р0 = 10атм; 
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ANALYSIS OF RESULTS. 

 

   Lambda=1                                Lambda=1/2                          Lambda=1/3                

Figure 2: Change 𝛏(𝛕)- the amplitude of the deflection of the panel of the cylindrical 

shell from time to time at different angle- 𝛃 and coefficient 𝛌 

                 Lambda=1/5              Lambda=1/7                           Lambda=1/9 

Figure 3: Change 𝛏(𝛕)- the amplitude of the deflection of the panel of the cylindrical 

shell from time to time at different angle- 𝛃 and coefficient 𝛌. 

Figure 4: Change in the normal displacement of the middle surface of the panel of the 

cylindrical shell - 𝐰(𝐱, 𝐲, 𝐭)    from the coordinate - x, y at different coefficients 𝛌 
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а)                                                                       б) 

Figure: 5 a,b. Change in the normal displacement of the middle surface of the 

cylindrical shell panel - 𝐰(𝐱, 𝐲, 𝐭)   from the coordinates - x (5a-Figure) and y (5a-

Figure) at different coefficients 𝛌. 

The graphs in Figures 2 and 3 show that with an increase in the coefficient λ, the amplitude of 

the deflection of the panel of the cylindrical shell increases. The same character of the change 

in the deflection is observed with an increase in the angle-β. 

Under the action of the pressure wave, the amplitude of the deflection of the panel of the 

cylindrical shell increases exponentially to the maximum values. Once the pressure waves 

cover the surface of the panel, the deflection values become constant. 

 The change in the normal displacement of the middle surface of the panel of the cylindrical 

shell - w(x, y, t) from the coordinates - x, y at different coefficients λ is shown in the 4.5-figure. 

The oscillations of the panel in an ideal fluid are close to aperiodic, which is due to its large 

damping. 

Static formulation of the problem 

Let the cylindrical panel of the shell be statically loaded with uniform pressure - q0
∗ =

q0

E
 acting 

from the convex side. That is, the load is distributed over the entire surfaces and applied to the 

panel statically. Then from (1.11) we obtain the following equation with respect to without 

dimensional deflection of the panel - ξ: 
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Obtained numerical values for q0
∗  at various coefficients а given in Table-1. β =

π

6
  

Table 1: Change in pressure value depending on the coefficient λ. 

λ 1

1
 

1

2
 

1

3
 

1

5
 

1

9
 

q0
∗  0.554 0.07 0.014 0.002 0.0008 

From the table it can be observed that with a decrease in the coefficient λ, the pressure values 

- q0
∗  decrease. 

 

CONCLUSIONS 

1. A mathematical model has been compiled for the equation of motion of a cylindrical panel 

placed in a boundless ideal fluid. 

2. Nonlinear differential equations of motion of a cylindrical panel placed in an infinite ideal 

fluid are solved numerically using the Maple-17 program. 

3. The results of the change ξ(τ)- - of the amplitude of the deflection of the panel of the 

cylindrical shell from time to time at different angle - β and coefficient λ are obtained. 

4. 4. The results of the change in the normal displacement of the middle surface of the 

cylindrical shell panel - w(x, y, t)   from the coordinate - x at different coefficients λ are 

obtained. 

5. It can be seen from the graphs that the oscillations of the panel in an ideal liquid are close 

to aperiodic. This is due to its great vibration damping. 

 
REFERENCES 

1) Sedov L.I. Methods of similarity and dimension in mechanics. Gostekhizdat, 1951 

2) Grigolyuk E.I., Gorshkov A.G. Non-stationary vibrations of the panel upon impact in an acoustic 

environment. 

3) Volmir A.S. Flexible plates and shells. 

4) Karimov A. I. Vibrations of geometrically nonlinear viscouselastic cylindrical shells interacting with an 

elastic medium. Journal of Pharmaceutical Negative Results. The paper is published in Volume 13 Special 

Issue 8, 2022. 

5) Karimov A.I. Monograph. Oscillations of a cylindrical shell interacting with an elastic medium. LAP 

LAMBERT Academic Publishing. Publishing group str.A.Pusso 15,of 61.Chisnau-2068. Republic of 

Moldova Europe.ISSN:978-620-4-73020-2.2021y. 



 
  
 
 

DOI 10.17605/OSF.IO/KW2JQ 

612 | V 1 8 . I 0 4  
 

6) Karimov Abdusamat Ismonovich, Ismanov Muhammadziyo. Mathematical Modeling of Heat Flux 

Distribution in Raw Cotton Stored in Bunt. Engineering Vol.12. No. 8, August.20, 2020, 591-99.DOI: 

10.4236/eng.2020.128041. 

7) Abdusamad I. Karimov, Sayfitdin Sh.Baxritdinov, Muhammadjon G, Azambayev. Theoretical study of the 

Movement Process in the Vibration of Cotton Seeds. Journal of Advanced Research in Dynamical &Control 

Systems, Vol.12, 05-Special Issue, 2020.  

8) Ismanov.M.A. Programming Logic Controllers in the Codesys Programming 

Environment and Creating Algorithmic Block Functions. NamSU scientific bulletin - special issue of 2021 1. 

ISSN: 2181-0427 

 


