SUBDIVISION NUMBER OF SPLIT POINT SET DOMINATION OF A GRAPH

Dr. T. BRINDHA

Associate Professor, Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore. Tamilnadu, India. Email: mahimabrindha@gmail.com

Abstract

Let $G=(V, E)$ be a connected, nontrivial, simple, finite graph. In this paper a new parameter called subdivision split point set domination is introduced and is defined by a set D of vertices in a graph G is a subdivision point set domination, if (i) The graph obtained from a graph G by subdividing each edge of G exactly once (ii) For every set $\mathrm{S} \subseteq \mathrm{V}$-D such that $\mathrm{v} \in \mathrm{D}$, that is $<\mathrm{S} \cup\{\mathrm{v}\}>$ is connected. (iii) The induced sub graph $<\mathrm{V}-\mathrm{D}>$ is disconnected. The minimum cardinality of subdivision split point set dominating set is denoted by $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G})$). Besides some bounds, exact values of $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))$ are determined. Some theorems based on split point Set Domination are also discussed

Keywords: Domination Number, Split domination number, Point set domination number, Subdivision number of split point set domination number

1. INTRODUCTION

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple, undirected, finite nontrivial graph with vertex set V and edge set E . The maximum, minimum degree among the vertices of G is denoted by $\delta(\mathrm{G}), \Delta(\mathrm{G})$ respectively. If deg $v=0$ then v is called an isolated vertex of G. If $\operatorname{deg} v=1$ then v is called a pendantvertex of G . And $\mathrm{K}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}}, \mathrm{W}_{\mathrm{n}}$ and $\mathrm{K}_{1, \mathrm{n}-1}$ denote the complete graph, the cycle, the Path, the Star and the Wheel on n vertices respectively. The floor function is the inverse function of a ceiling function. It gives the largest nearest integer of specific value.

A non-empty set $\mathrm{D} \subseteq \mathrm{V}$ of vertices in a graph G is called a dominating set if every vertex in V D is adjacent to some vertex in D . The domination number $\gamma(\mathrm{G})$ of G is the minimum cardinality of a dominating set. A dominating set D of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a split set dominating set if there exists a non-empty set $R \subseteq S$ such that $\langle R \cup T\rangle$ is connected for every set $T \subseteq V-D$ and the induced subgraph $\left\langle\mathrm{V}\right.$-D> is not connected. The split domination number $\gamma_{\mathrm{s}}(\mathrm{G})$ of a graph G is the minimum cardinality of a split dominating set. A set $D \subseteq V$ in a graph $G=(V$, $E)$ is called a point-set dominating set of G if for every non-empty subset $S \subseteq V-D$ there exists a vertex $\mathrm{v} \in \mathrm{D}$ such that the induced subgraph $<\mathrm{S} \cup\{\mathrm{v}\}>$ is connected and the point-set domination number of a graph G is the minimum cardinality of the Point-set domination number of a graph G and is denoted by $\gamma_{p}(G)$.A subdivision of an edge $e=u v$ of a graph G is the replacement of the edge e by a path (u, v, w). The graph obtained from a graph G by subdividing graph of G and is denoted by $S(G)$.
The purpose of this paper is to obtain some bounds for $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))$ and find its exact values for many classes of graphs including trees. Some theorems based on split point Set Domination are also discussed.

Henceforth, by a graph G we mean a connected graph, and V denotes its vertex set and $|\mathrm{V}|=\mathrm{n}$.

Definition: 1.1

A set D of vertices in a graph G is a subdivision split point set domination, if (i)The graph obtained from a graph G by subdividing each edge of G exactly once (ii) For every set $\mathrm{S} \subseteq$ VD such that $v \in \mathrm{D}$, that is $\langle\mathrm{S} \cup\{\mathrm{v}\}>$ is connected. (iii)The induced subgraph $<\mathrm{V}-\mathrm{D}\rangle$ is disconnected.

The minimum carnality of subdivision point set dominating set is denoted by $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))$ and subdivision point set dominating set is denoted by γ_{sp}-set.

Example: 1.2

Consider the following graph G :

Figure (1)
Here the dominating set $\mathrm{D}=\{1,3\}$. Therefore, the domination number $\gamma(\mathrm{G})=2$. And D is also point set domination. Therefore, $\gamma_{\mathrm{p}}(\mathrm{G})=2$. When we subdivide each edge of a graph G , it produces a new graph H as follows:

Figure (2)
Now the dominating set $\mathrm{D}=\{1,2,3,4\}$. Therefore the domination number
$\gamma(\mathrm{G})=2$. But D is not a point set dominating set, since for $\mathrm{S}=\{5,7\} \subseteq \mathrm{V}-\mathrm{D}$ there does not exist $\mathrm{v} \in \mathrm{D}$ such that $\langle\mathrm{S} \cup\{\mathrm{v}\}\rangle$ is connected. Therefore the subdivision number of split point set dominating set $\mathrm{D}=\{1,2,3,4,5,6\}$. Clearly $\gamma_{\mathrm{p}}(\mathrm{S}(\mathrm{G}))=6$.

ISSN 1533-9211

2. CHARACTERIZATION OF SUBDIVISION OF SPLIT POINT SET DOMINATING SET

Observation: 2.1
(i) For any graph G, $\gamma(\mathrm{G}) \leq \gamma_{\mathrm{p}}(\mathrm{G}) \leq \gamma_{\mathrm{sp}}(\mathrm{G}) \leq \gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))$.
(ii) For any graph $\mathrm{G}, \gamma_{\mathrm{sp}}=\mathrm{n}-\Delta$ where n is the number of vertices in $\mathrm{S}(\mathrm{G})$ and Δ is the maximum degree of $\mathrm{S}(\mathrm{G})$.

3. BOUNDS OF SUBDIVISION NUMBER OF SPLIT POINT SET DOMINATION:

Theorem: 3.1

Let G be a complete graph K_{n} with n vertices then $\gamma_{\text {sp }}(S(G))=\lfloor 3 n / 4\rfloor$ where $n \geq 3$.
Proof:
Let G be a graph K_{n} on n-vertices. Then the split point set dominating set is
$\mathrm{D}=\mathrm{V}-\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right\}$, where v_{i} and v_{j} are non-adjacent vertices. Also $\langle\mathrm{V}$ - D\rangle is disconnected.
Thus $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))=\mathrm{n}-2$ for all $\mathrm{n} \geq 3$.

Remark: 3.2

In the above theorem, $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))=1$ where $\mathrm{n}=2$.

Theorem: 3.3

Let G be a path P_{n} on n -vertices namely $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$, then $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))=\mathrm{n}-2$ where $\mathrm{n} \geq 3$.
Proof:
Let G be a graph P_{n} on n-vertices namely $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$. Then, the split point - set dominating set $\mathrm{D}=\mathrm{V}-\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right\}$, where v_{i} and v_{j} are non-adjacent vertices. Also $\langle\mathrm{V}-\mathrm{D}\rangle$ is disconnected. Thus $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))=\mathrm{n}-2$ for all $\mathrm{n} \geq 3$.
Theorem: 3.4
Let G be a Cycle C_{n} on n -vertices namely $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$, then $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))=\mathrm{n}-2$ where $\mathrm{n} \geq 6$.
Proof:
Let G be a cycle C_{n} on n -vertices namely $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$. Then, the split point set dominating set $\mathrm{D}=\mathrm{V}-\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right\}$, where v_{i} and v_{j} are non-adjacent vertices. Also
<V-D> is disconnected.
Thus $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))=\mathrm{n}-2$ for all $\mathrm{n} \geq 6$.

Theorem: 3.5

For a star graph, $\gamma_{\text {sp }}(\mathrm{S}(\mathrm{G}))=\lfloor\mathrm{n} / 2\rfloor+1$ where $\mathrm{n} \geq 5$.

Proof:

Let u be a vertex of degree $n-1$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the pendant vertices of G. Subdivide each edge and an vertex say $u_{1}, u_{2}, \ldots, u_{n}$ each of degree 2 . Then the split point set dominating set D $=\left\{\mathrm{u}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$, which is also the point set dominating set.Also $\langle\mathrm{V}-\mathrm{D}\rangle$ is disconnected.

Hence $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))=\lfloor\mathrm{n} / 2\rfloor+1$ where $\mathrm{n} \geq 5$.

Theorem: 3.6

Let G be a bistar graph with order n vertices, then $\gamma_{\mathrm{sp}}(S(G))=\lfloor 3 n / 2\rfloor-1$ where $n \geq 3$.
Proof:
Let G be a bistar graph that joining two star graph by a path P_{2}.
Let $s_{1}, s_{2}, \ldots, s_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be the pendent vertices of G.
Let u_{i} be a new vertex by subdivide the path P_{2}. Subdivide the incident edges of v and u namely $s_{1}, s_{2}, \ldots, s_{n}$ and $t_{1}, t_{2}, \ldots, t_{n}$ respectively.
The split point set domination set $D=V-\left\{u_{i}, s_{1}, s_{2}, \ldots, s_{n}\right\}$ (or) $V-\left\{u_{i}, t_{1}, t_{2}, \ldots, t_{n}\right\}$.Also $<V-$ $\mathrm{D}>$ is disconnected.

Therefore $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))=\lfloor 3 \mathrm{n} / 2\rfloor-1$.

Theorem: 3.7

For a comb graph $G, \gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))=2 \mathrm{n}-4$ if $\mathrm{n} \geq 6$.
Proof:
Let G be a comb graph, having a path vertices namely $v_{1}, v_{2}, \ldots, v_{n}$ and pendant vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$. Then in G, point set domination set of $\mathrm{D}=\mathrm{V}-\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right\}$.

Then in $S(G)$, selecting u_{i} in $V-D$, then u_{i} is adjacent to v_{j} and u_{k} in D and also v_{i} is adjacent to v_{j} and u_{k}. Also $\langle\mathrm{V}-\mathrm{D}\rangle$ is disconnected.

Therefore, $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))=2 \mathrm{n}-4$ if $\mathrm{n} \geq 6$.

Remark: 3.8

For a comb graph $G, \gamma_{\mathrm{sp}}(S(G))=2 n-3$ if $n=4$.

4. MORE THEOREMS BASED ON SUBDIVISION NUMBER OF SPLIT POINT SET DOMINATION

Theorem: 4.1

Let u be a cut vertex of a graph G. Then u is in every $\gamma_{s p}$-set D of G if either
(i) G-u has at least three components or
(ii) G-u has exactly two components G_{1} and G_{2} and neither $\left\langle\mathrm{G}_{1} \cup\{\mathrm{u}\}>\right.$ nor $\left\langle\mathrm{G}_{2} \cup\{\mathrm{u}\}>\right.$ is a path.

Proof:
Let D be a $\gamma_{\text {sp }}$-set. Suppose $u \notin D$. Condider vertices v and w in different components of G-u that are not in D. Since u is on every v-w path in G and $u \notin D$, there is no set $S \subset D$ such that the subgraph $\langle S \cup\{\mathrm{v}, \mathrm{w}\}\rangle$ is connected. Which is a contradiction. Hence there are two cases arises

Case 1
G-u has at least three components say $\mathrm{G}_{1}, \mathrm{G}_{2}$ and G_{3}. And since all vertices in all except possibly one component of G-u belong to D say G_{1} belong to D. Let u_{1} and u_{2} are in D. Then the set $D_{1}=\left(D-\left\{u_{1}, u_{2}\right\}\right) \cup(v\}$ is also a $\gamma_{s p}$-set of G with $\left|D_{1}\right|=|D|-1$, which is a contradiction to D is a γ_{sp}-set. This proves $\mathrm{u} \in \mathrm{D}$.

Case 2

G-u has exactly two components say G_{1} and G_{2} such that neither $H_{1}=\left\langle G_{1} \cup\{u\}>\right.$ nor $\mathrm{H}_{2}=\left\langle\mathrm{G}_{2} \cup\{\mathrm{u}\}\right\rangle$ is a path.
If $u \notin D$ then all vertices in either G_{1} or G_{2} say G_{1} are in D. Let T be a spanning tree of H_{1} such that T has at least two end vertices u_{1} and u_{2} other than u. Clearly the set
$D_{1}=\left(D-\left\{u_{1}, u_{2}\right\}\right) \cup(v\}$ is $\gamma_{\text {sp }}$-set.with $\left|D_{1}\right|=|D|-1$, which is a contradiction to D is a $\gamma_{s p}$-set. This proves $u \in D$.

Theorem: 4.2

For any connected graph G, $\gamma_{\text {sp }}(\mathrm{S}(\mathrm{G})) \geq \mathrm{n}$.
Proof:
Let D be any split point set dominating set of $S(G)$, let $D_{1}=D \cap V(G)$ and
$D_{2}=D \cap(V(S(G)) \backslash V(G))$. Since D is a split point set dominating set of $S(G)$,
$\mathrm{D}_{1} \neq \varnothing$ and $\mathrm{D}_{2} \neq \emptyset$ and each element of D_{2} dominates at most one vertex of $\mathrm{V}(\mathrm{G})$. Hence it follows $\left|\mathrm{D}_{2}\right| \geq \mathrm{n}-\left|\mathrm{D}_{1}\right|$. Then $|\mathrm{D}|=\left|\mathrm{D}_{1}\right|+\left|\mathrm{D}_{2}\right| \geq \mathrm{n}$ so that $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G})) \geq \mathrm{n}$.

Theorem: 4.3

Let G be a tree graph with n vertices then $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))=\mathrm{n}-\mathrm{s}_{1}-1$
Proof:
Let G be a tree graph with n vertices and let B_{1} and B_{2} be the set of maximum and minimum support vertices containing in G with $\left|\mathrm{B}_{1}\right|=\mathrm{s}_{1}$ and $\left|\mathrm{B}_{2}\right|=\mathrm{s}_{2}$ respectively. Now let u be the vertex which is adjacent to the support s_{1} in G . Therefore the subdivision split point set $\mathrm{D}=\mathrm{V}$ -$\mathrm{B}_{1}-\{\mathrm{u}\}$.Therfore $\gamma_{\mathrm{sp}}(\mathrm{S}(\mathrm{G}))=\mathrm{n}-\mathrm{s}_{1}-1$

REFERENCES

1. Bondy J .A Murty, U.S.R. Graph Theory; Springer; New York, NY, USA, (2008).
2. Haynes T. W., Hedetniemi S. T , Slater P.J, Fundamentals of domination in graphs, CRC press, (1998)
3. Sampathkumar E and Puspha Latha L , Point - set domination number of a graph, Indian Jounal of Pure and applied Mathematics, 24 (4) (1993) pp:225-229.
4. Veerabhadrappa R.Kulli, Janakiraman, The Split Domination Number of a Graph, Graph Theory Notes of New York XXXII, January 1997, pp: 16-19
5. Velammal.S, Arumugam.S, Domination and subdivision in graphs, Indian Journal of Applied Research, Vol.I, Issue III December (2011) pp: 180-183.
