

ISSN 1533-9211

SUBDIVISION NUMBER OF SPLIT POINT SET DOMINATION OF A GRAPH

Dr. T. BRINDHA

Associate Professor, Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore. Tamilnadu, India. Email: mahimabrindha@gmail.com

Abstract

Let G= (V,E) be a connected, nontrivial, simple, finite graph. In this paper a new parameter called subdivision split point set domination is introduced and is defined by a set D of vertices in a graph G is a subdivision point set domination, if (i) The graph obtained from a graph G by subdividing each edge of G exactly once (ii) For every set S V-D such that $v \in D$, that is $\langle S \cup \{v\} \rangle$ is connected. (iii) The induced sub graph $\langle V-D \rangle$ is disconnected. The minimum cardinality of subdivision split point set domination get is denoted by γ_{sp} (S (G)). Besides some bounds, exact values of $\gamma_{sp}(S (G))$ are determined. Some theorems based on split point Set Domination are also discussed

Keywords: Domination Number, Split domination number, Point set domination number, Subdivision number of split point set domination number

1. INTRODUCTION

Let G=(V,E) be a simple, undirected, finite nontrivial graph with vertex set V and edge set E. The maximum, minimum degree among the vertices of G is denoted by $\delta(G)$, $\Delta(G)$ respectively. If deg v=0 then v is called an isolated vertex of G. If deg v=1 then v is called a pendantvertex of G. And K_n,C_n,P_n, W_n and K_{1,n-1} denote the complete graph, the cycle, the Path, the Star and the Wheel on n vertices respectively. The floor function is the inverse function of a ceiling function. It gives the largest nearest integer of specific value.

A non-empty set $D \subseteq V$ of vertices in a graph G is called a dominating set if every vertex in V-D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set D of a graph G=(V,E) is a split set dominating set if there exists a non-empty set $R \subseteq S$ such that $\langle R \cup T \rangle$ is connected for every set $T \subseteq V$ -D and the induced subgraph $\langle V$ -D \rangle is not connected. The split domination number γ_s (G) of a graph G is the minimum cardinality of a split dominating set. A set $D \subseteq V$ in a graph G = (V, E) is called a point-set dominating set of G if for every non-empty subset $S \subseteq V$ - D there exists a vertex $v \in D$ such that the induced subgraph $\langle S \cup \{v\} \rangle$ is connected and the point-set domination number of a graph G is the minimum cardinality of the Point-set domination number of a graph G and is denoted by $\gamma_p(G)$. A subdivision of an edge e = uv of a graph G is the replacement of the edge e by a path (u, v, w). The graph obtained from a graph G by subdividing graph of G and is denoted by S (G).

The purpose of this paper is to obtain some bounds for $\gamma_{sp}(S(G))$ and find its exact values for many classes of graphs including trees. Some theorems based on split point Set Domination are also discussed.

Henceforth, by a graph G we mean a connected graph, and V denotes its vertex set and |V| = n.

Definition: 1.1

A set D of vertices in a graph G is a subdivision split point set domination, if (i)The graph obtained from a graph G by subdividing each edge of G exactly once (ii) For every set $S \subseteq V$ -D such that $v \in D$, that is $\langle S \cup \{v\} \rangle$ is connected. (iii)The induced subgraph $\langle V$ -D \rangle is disconnected.

The minimum carnality of subdivision point set dominating set is denoted by γ_{sp} (S(G)) and subdivision point set dominating set is denoted by γ_{sp} -set.

Example: 1.2

Consider the following graph G:

Figure (1)

Here the dominating set $D = \{1, 3\}$. Therefore, the domination number $\gamma(G) = 2$. And D is also point set domination. Therefore, $\gamma_p(G) = 2$. When we subdivide each edge of a graph G, it produces a new graph H as follows:

Figure (2)

Now the dominating set $D = \{1, 2, 3, 4\}$. Therefore the domination number

 γ (G) = 2. But D is not a point set dominating set, since for S= {5,7} \subseteq V-D there does not exist v \in D such that $\langle S \cup \{v\} \rangle$ is connected. Therefore the subdivision number of split point set dominating set D = {1, 2, 3, 4, 5, 6}. Clearly γ_p (S(G)) = 6.

ISSN 1533-9211

DOI 10.17605/OSF.IO/Z4WKG

2. CHARACTERIZATION OF SUBDIVISION OF SPLIT POINT SET DOMINATING SET

Observation: 2.1

- (i) For any graph G, $\gamma(G) \leq \gamma_p(G) \leq \gamma_{sp}(G) \leq \gamma_{sp}(S(G))$.
- (ii) For any graph $G_{\gamma_{sp}} = n \Delta$ where n is the number of vertices in S(G) and Δ is the maximum degree of S(G).

3. BOUNDS OF SUBDIVISION NUMBER OF SPLIT POINT SET DOMINATION:

Theorem: 3.1

Let G be a complete graph K_n with n vertices then $\gamma_{sp}(S(G)) = \lfloor 3n/4 \rfloor$ where $n \ge 3$.

Proof:

Let G be a graph K_n on n-vertices. Then the split point set dominating set is

 $D = V - \{v_i, v_j\}$, where v_i and v_j are non-adjacent vertices. Also $\langle V-D \rangle$ is disconnected.

Thus $\gamma_{sp}(S(G)) = n-2$ for all $n \ge 3$.

Remark: 3.2

In the above theorem, $\gamma_{sp}(S(G)) = 1$ where n = 2.

Theorem: 3.3

Let G be a path P_n on n-vertices namely $v_1, v_2, ..., v_n$, then $\gamma_{sp}(S(G)) = n-2$ where $n \ge 3$.

Proof:

Let G be a graph P_n on n-vertices namely $v_1, v_2, ..., v_n$. Then, the split point – set dominating set $D = V - \{v_i, v_j\}$, where v_i and v_j are non-adjacent vertices. Also $\langle V - D \rangle$ is disconnected. Thus $\gamma_{sp}(S(G)) = n-2$ for all $n \ge 3$.

Theorem: 3.4

Let G be a Cycle C_n on n-vertices namely $v_1, v_2, ..., v_n$, then $\gamma_{sp}(S(G)) = n-2$ where $n \ge 6$.

Proof:

Let G be a cycle C_n on n-vertices namely $v_1, v_2, ..., v_n$. Then, the split point set dominating set $D = V - \{v_i, v_j\}$, where v_i and v_j are non-adjacent vertices. Also

<V-D> is disconnected.

Thus $\gamma_{sp}(S(G)) = n-2$ for all $n \ge 6$.

Theorem: 3.5

For a star graph, $\gamma_{sp}(S(G)) = \lfloor n/2 \rfloor + 1$ where $n \ge 5$.

Proof:

Let u be a vertex of degree n-1 and $v_1, v_2, ..., v_n$ be the pendant vertices of G. Subdivide each edge and an vertex say $u_1, u_2, ..., u_n$ each of degree 2. Then the split point set dominating set D = { $u, v_1, v_2, ..., v_n$ }, which is also the point set dominating set.Also <V-D> is disconnected.

Hence $\gamma_{sp}(S(G)) = \lfloor n/2 \rfloor + 1$ where $n \ge 5$.

Theorem: 3.6

Let G be a bistar graph with order n vertices, then $\gamma_{sp}(S(G)) = \lfloor 3n/2 \rfloor - 1$ where $n \ge 3$.

Proof:

Let G be a bistar graph that joining two star graph by a path P₂.

Let s_1, s_2, \ldots, s_n and u_1, u_2, \ldots, u_n be the pendent vertices of G.

Let u_i be a new vertex by subdivide the path P_2 . Subdivide the incident edges of v and u namely $s_1, s_2, ..., s_n$ and $t_1, t_2, ..., t_n$ respectively.

The split point set domination set D = V- { $u_i, s_1, s_2, ..., s_n$ } (or) $V - \{u_i, t_1, t_2, ..., t_n\}$. Also $\langle V - D \rangle$ is disconnected.

Therefore γ_{sp} (S(G)) = $\lfloor 3n/2 \rfloor - 1$.

Theorem: 3.7

For a comb graph G, γ_{sp} (S(G)) = 2n - 4 if $n \ge 6$.

Proof:

Let G be a comb graph, having a path vertices namely $v_1, v_2, ..., v_n$ and pendant vertices $u_1, u_2, ..., u_n$. Then in G, point set domination set of $D = V - \{u_i, v_j, v_k\}$.

Then in S (G), selecting u_i in V-D, then u_i is adjacent to v_j and u_k in D and also v_i is adjacent to v_j and u_k . Also $\langle V-D \rangle$ is disconnected.

Therefore, $\gamma_{sp}(S(G)) = 2n - 4$ if $n \ge 6$.

Remark: 3.8

For a comb graph G, γ_{sp} (S(G)) =2n - 3 if n= 4.

4. MORE THEOREMS BASED ON SUBDIVISION NUMBER OF SPLIT POINT SET DOMINATION

Theorem: 4.1

Let u be a cut vertex of a graph G. Then u is in every γ_{sp} -set D of G if either

(i) G-u has at least three components or

(ii) G-u has exactly two components G_1 and G_2 and neither $\langle G_1 \cup \{u\} \rangle$ nor $\langle G_2 \cup \{u\} \rangle$ is a path.

Proof:

Let D be a γ_{sp} -set. Suppose $u \notin D$. Condider vertices v and w in different components of G-u that are not in D. Since u is on every v-w path in G and $u \notin D$, there is no set $S \subset D$ such that the subgraph $\langle S \cup \{v,w\} \rangle$ is connected. Which is a contradiction. Hence there are two cases arises

Case 1

G-u has at least three components say G_1, G_2 and G_3 . And since all vertices in all except possibly one component of G-u belong to D say G_1 belong to D. Let u_1 and u_2 are in D. Then the set $D_1=(D-\{u_1,u_2\})\cup(v\}$ is also a γ_{sp} -set of G with $|D_1|=|D|-1$, which is a contradiction to D is a γ_{sp} -set. This proves $u \in D$.

Case 2

G-u has exactly two components say G_1 and G_2 such that neither $H_1 = \langle G_1 \cup \{u\} \rangle$ nor $H_2 = \langle G_2 \cup \{u\} \rangle$ is a path.

If $u \notin D$ then all vertices in either G_1 or G_2 say G_1 are in D. Let T be a spanning tree of H_1 such that T has at least two end vertices u_1 and u_2 other than u. Clearly the set

 $D_1 = (D - \{u_1, u_2\}) \cup (v)$ is γ_{sp} -set.with $|D_1| = |D| - 1$, which is a contradiction to D is a γ_{sp} -set. This proves $u \in D$.

Theorem: 4.2

For any connected graph G, $\gamma_{sp}(S(G)) \ge n$.

Proof:

Let D be any split point set dominating set of S(G), let $D_1 = D \cap V(G)$ and

 $D_2 = D \cap (V(S(G)) \setminus V(G))$. Since D is a split point set dominating set of S(G),

 $D_1 \neq \emptyset$ and $D_2 \neq \emptyset$ and each element of D_2 dominates at most one vertex of V(G). Hence it follows $|D_2| \ge n - |D_1|$. Then $|D| = |D_1| + |D_2| \ge n$ so that $\gamma_{sp}(S(G)) \ge n$.

Theorem: 4.3

Let G be a tree graph with n vertices then γ_{sp} (S(G)) =n-s₁-1

Proof:

Let G be a tree graph with n vertices and let B_1 and B_2 be the set of maximum and minimum support vertices containing in G with $|B_1| = s_1$ and $|B_2| = s_2$ respectively. Now let u be the vertex which is adjacent to the support s_1 in G. Therefore the subdivision split point set D=V- B_1 -{u}.Therfore $\gamma_{sp}(S(G)) = n-s_1-1$

ISSN 1533-9211

DOI 10.17605/OSF.IO/Z4WKG

REFERENCES

- 1. Bondy J .A Murty, U.S.R. Graph Theory; Springer; New York, NY, USA, (2008).
- 2. Haynes T. W., Hedetniemi S. T, Slater P.J, Fundamentals of domination in graphs, CRC press, (1998)
- 3. Sampathkumar E and Puspha Latha L , Point set domination number of a graph, Indian Jounal of Pure and applied Mathematics, 24 (4) (1993) pp:225-229.
- 4. Veerabhadrappa R.Kulli, Janakiraman, The Split Domination Number of a Graph , Graph Theory Notes of New York XXXII, January 1997, pp: 16-19
- 5. Velammal.S, Arumugam.S, Domination and subdivision in graphs, Indian Journal of Applied Research, Vol.I, Issue III December (2011) pp: 180 -183.

