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Abstract 

The most frequent cancer in women and the second most common cancer overall among newly diagnosed cases 

is breast cancer. Local invasion and metastasis are factors that precede the majority of cancer fatalities, with 

metastasis accounting for 90% of deaths, but very little is known about the molecular causes of invasion and 

metastasis. Thus exposing the underlying causes of this condition at the Transcriptomics level can lead to a novel 

treatment approach for Breast Cancer. To identify underlying differences between epithelial breast cancer tissues 

(TEC), stromal breast cancer tissues (SCC), normal control epithelial breast cancer tissue samples (EN), and 

normal control stromal breast cancer tissue samples (SN) at the Transcriptomics level, the total RNA microarray 

processed data from GEO for breast cancer patients was analyzed. The transcriptional profiles of 64 samples, 

including 28 TEC, 28 SCC, 5 EN, and 5 SN controls received from the NCBI-Bio project, were therefore subjected 

to various bioinformatics analysis in the current work (PRJNA107497). First, exploratory data analysis based on 

gene expression data using principal component analysis (PCA) depicted distinct patterns between TEC vs EN 

and SCC vs SN samples. Subsequently, the Welch’s T-test differential gene expression analysis identified 22277 

significantly differentially expressed genes (Fold change (>= 1.5), p.adj <value 0.1) between these conditions. 

This study reveals the genes like COL11A1, COL1A1, COL1A2, COL3A1, COL5A1 and COL5A2 as the key 

features that may substantially contribute to metastasis of breast cancer from epithelial cells to stromal cells in the 

mammary glands. As a result of the up-regulated and down-regulated genes, this study was also able to pinpoint 

the affected biological pathways for both the SCC vs. SN samples and the TEC vs. TN samples. This most 

definitely offers an important clue regarding the root of the fatal metastatic cancer problem. Ultimately, the 

findings provided here offer fresh perspectives on breast cancer metastasis. 

Keywords: Breast cancer, Machine Learning, Differential gene expression, KEGG pathway analysis, PCA, Heat 

maps, Dendrogram 

 

1. INTRODUCTION 

Due to its high mortality and morbidity rates, breast cancer is one of the main health issues for 

women (1). Even with adjuvant chemotherapy, the five-year survival rate for metastatic breast 

cancer is less than 30%. (2). Breast cancer (BC) is the most common malignancy that affects 

women worldwide. In 2020, it will surpass lung cancer as the most prevalent type of cancer 

globally, with a projected 2.3 million new cases annually, or 11.7% of all cancer cases (3). 

Epidemiological studies predict that there will be more than 2 million cases of BC worldwide 

by the year 2030. (4). between 1965 and 1985, the incidence in India increased significantly—

nearly by 50%. In India, there were an estimated 118000 incident cases in 2016 (95% 

confidence interval: 107000–130000), 98.1% of whom were female, and 526000 prevalent 

cases (474000 to 574000) (3, 4). Every state in the nation has seen an increase in the age-
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standardized incidence rate of BC in females over the past 26 years, which is up 39.1% (95% 

confidence interval, 5.1 to 85.5) (4). 

Local invasion and metastasis are factors that precede the majority of cancer fatalities, with 

metastasis accounting for 90% of deaths from solid tumors (5). Unfortunately, little is known 

about the molecular causes of invasion and metastasis (5). Malignant epithelial cells must 

infiltrate into the surrounding breast stroma through the basement membrane extracellular 

matrix (ECM) in order for DCIS to proceed to stage I breast cancer. Cancer cells gain the ability 

to infect nearby vascular structures and spread once invasion has taken place and they have 

entered the stroma (6). Studies in genetics and cell biology have demonstrated that the tumour 

stroma is necessary for tumour growth and progression in addition to the altered epithelial cells 

(7, 8). Fibroblasts, adipocytes, the ECM, and blood and lymph arteries make up stromal tissue, 

all of which have been found to affect tumour development. As cancer spreads, the stroma 

within the tumour microenvironment is altered. These changes include fibroblast activation, 

ECM remodeling, and angiogenesis (9). These modifications are thought to be crucial in 

converting the stroma into a metastasis-supportive milieu. 

The transcriptome of each of these compartments either at epithelial or stromal level must be 

studied individually in order to identify effects of each of these compartments on the cell and 

molecular level. Hence, there are studies that are concentrated at identifying an independent 

molecular signature of stromal tissue linked with cancer are constrained. According to current 

research employing laser capture microdissection (LCM), the metastasizing primary breast 

tumour is detected by the up-regulation of stroma specific genes together with the state of 

inactivation of tumor-epithelial specific genes and signals (9). Moreover, research and 

investigations were carried out utilising normal epithelium and stroma samples taken from 

patients undergoing reduction mammoplasty or surgical treatment for breast cancer, which 

were then dissected using the LCM method. These studies have additionally shown that the 

stromal microenvironment modifications are not present prior to the stage before 

carcinogenesis is initiated and are instead directly associated to cancer progression and 

metastasis (10). ED-A splice of fibronectin along with Alpha smooth muscle actin (SMA) have 

been identified to increase fibroblast activation in fibrosis and wound healing recently. Now, 

it has been discovered that fibroblasts are active in cancer, which is consistent with the idea 

that tumours are comparable to a persistent wound that doesn't heal (11). These activated 

fibroblasts, also known as cancer-associated fibroblasts (CAFs), resemble activated fibroblasts 

that are present in wounds and inflammatory regions in many ways (12). Because of their varied 

cellular origins and expression markers, CAFs are currently not precisely defined. These 

studies provide support for the notion that understanding the development of metastatic disease 

depends on understanding the transcriptome of the tumour microenvironment. Cancer 

associated fibroblasts (CAFs), which are different from regular fibroblasts and play a role in 

mediating tumour invasion and metastasis, are hypothesized to play a role in breast cancer, 

which is an epithelial cell phenomena (12, 13).Epithelial tumour cells can invade and spread 

throughout the body as a result of changed gene expression in the tumour stroma brought on 

by the progression of breast cancer. Furthermore, fibroblasts and epithelial cells cooperate to 

facilitate tumour invasion and metastasis. Owing to the about explanations, we therefore 
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hypothesize that invasion by fibroblasts is caused partly by alterations in the ECM, which 

altogether creates a complicated framework for the angiogenesis and the migration of tumour 

epithelial cells (14). 

Despite the fact that cancer-specific mortality has decreased as a result of therapeutic 

procedures such surgery, chemotherapy, radiation, endocrine therapy, and targeted therapy, 

there are still numerous therapeutic failures that lead to cancer recurrence, metastasis, and death 

(15). Understanding the molecular mechanisms by which reactive stromal fibroblasts affect 

cancer cells will help to improve therapeutic outcomes in the treatment of breast cancer. 

Our transcriptomics study's main objective was to uncover the underlying causes of the 

discrepancies in the gene expression profiles of cancerous stromal (SCC) and cancer epithelial 

(TEC) tissues as compared to control samples. Our central concern was to identify the affected 

pathways at the Molecular, Biological and Cellular levels due to the differences in gene 

expression patterns seen among TEC and SCC patient tissue samples. Our main goal was to 

establish the function stroma plays in breast cancer invasion by examining the identified 

transcriptome differences between stromal and epithelial cells in normal breast tissue and 

breast cancer tissue samples. We looked for transcriptional errors to gain a better understanding 

of the growth, development, and progression of tumours in breast cancer. Future treatments 

may greatly benefit from identifying the underlying genes that cause breast cancer because the 

expression of TEC and SCC is tissue-specific and depends on the phenotypes in which it 

occurs. 

Therefore, in the current study, we looked at the transcriptomics profiles of breast tissue 

samples taken during surgery from patients having invasive breast cancer surgically removed 

(n=56) [Cancer Epithelial Tissues=28; Cancer Stromal Tissues=28] and normal breast tissue 

samples taken from patients (n=10) to understand the affected Molecular, Biological, and 

Cellular pathways and their corresponding differentially expressed genes at the transcriptomics 

level showing We separated the impacted pathways as the disease progressed to later phases of 

breast cancer metastasis after identifying the relevant genes between these two experimental 

groups. 

 

2. MATERIALS AND METHODS  

2.1 Data sets  

In this particular research study, the transcriptome data was extracted from the NCBI GEO 

server and the data set number was [GSE10797]. The dataset of this project was generated by 

Casey T, Bond J, Tighe S, Hunter T et al. and is published as a bio project on NCBI with the 

bio project accession number PRJNA107497. Transcriptome data contains microarray 

processed quantile normalized values using the Bioconductor package Lumi (version 2.32.0) 

of total RNA extracted from the stromal and epithelial breast cancer cells from the [HG-

U133A_2] Affymetrix Human Genome U133A 2.0 Array platform. The data set of the 

mentioned Bio project is depicted in Table 1 below.  
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Table 1: Datasets used in the present study 

Disease State Sample Group Name Number of Samples 

Cancer Epithelial Tissues [TEC] 28 

Cancer Stromal Tissues [SCC] 28 

Normal Stromal Tissue [SN] 5 

Normal Epithelial Tissue[EN] 5 

2.2 Data Pre-Processing  

Quantile-normalized signal data was used to process the microarray data. There was Gene IDs 

in the processed data. Using the SOFT family files, we mapped Gene IDs to gene symbols. 

2.2.1 Exploratory Analysis 

The exploratory study showed the comparison of the three groups of samples, comprising 

samples from healthy and diseased patients (Cancer Epithelial and Cancerous Stromal tissues). 

The following exploratory data analysis was carried out using the principal component analysis 

tool built within the Metaboanalyst Bioinformatics Server (https://www.metaboanalyst.ca/), in 

order to better understand the patterns in the data. The diversity between the data is discretely 

represented and visualized using PCA, a dimensionality reduction approach (15). PCA was 

performed in following three independent conditions: (1) All samples (Cancer Epithelial 

tissues vs Cancer Stromal tissues vs control samples); (2) Cancer Epithelial tissue vs Normal 

Epithelial Tissue; (3) Cancer Stromal tissues vs Normal Stromal Tissue; Followed by that, the 

PCA scatter plots were plotted to determine the patterns. 

2.2.2 Differential Gene expression Analysis  

Comparing the TEC and SCC samples with the Control samples, EN and SN, respectively, 

allowed for the differential Gene Expression (DGE) analysis to be carried out. The samples 

were subjected to a differential gene expression (DGE) analysis utilizing the Welch's T-test on 

the Metaboanalyst Software and the GEO2R built-in DEG function tool by NCBI GEO 

platform. To identify the relevant genes and offer statistical significance for variances with 

unequal variances, the Welch's T-test is a statistical analysis modification (15). When two 

groups have unequal sample sizes and variances, a Welch's test might be utilized (15). The 

threshold of (p.adj value<0.1, Fold change (>= 1.5)) was used to identify the potentially 

differentiating important genes (16). Apart from this, we used the feature selection algorithm 

on metaboanalyst to scrutinize the top 25 differentially expressed genes, so that one can get a 

better idea of the genes involved in the metastasis of Breast cancer. 

2.2.3 Assessment of Discriminatory potential of significant genes  

Then, using the chosen set of differentially expressed significant genes alone, statistical 

analysis such PCA, dendrograms, and H-Clustering was carried out in order to evaluate and 

illustrate the potential of the found significant genes in differentiating both classes of data. In 

order to comprehend the potential of significant genes frequent in differentiating the TEC, 

SCC, and Control samples based on their gene expression, H-clustering (Distance: Euclidean, 

Linkage: average) was carried out. The gene expression patterns among the various classes of 
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samples were eventually depicted using heatmaps. Techniques like Heat-map and H-clustering 

make it easier to evaluate improved feature selection for the cutting-edge machine learning 

algorithms that have been proposed. Heatmap makes it simple to determine which features are 

most closely associated to the target variable, whereas H-clustering enables us to see how our 

data set clusters in order to see how features are chosen. Also, this suggests that there is a factor 

at the transcriptomics level that separates the genes into distinct heat map expression patterns 

and Dendrogram clusters. 

2.2.4 Gene Enrichment Analysis  

The Enrichr: Pathway analysis software's annotation module was used to do a gene enrichment 

analysis for Gene Ontology (GO) concepts in order to clarify the biological importance of the 

key genes. Also, the Enrichr software was used to find significantly expressed genes (p.adj 

value 0.05, Fold change (>= 1.5) that enriched the KEGG pathways (16,25). Enrichr is a web-

based enrichment analysis application that is simple to use and intuitive and offers many sorts 

of visualization summaries of the collective functions of gene lists (16,25). Additionally, 

utilizing the Enrichr software-based platform, enriched pathways were also found and 

examined, notably for the significantly differentially expressed down-regulated and up-

regulated genes. 

 

3. RESULTS  

To uncover the underlying gene signatures and biological pathways at the transcriptomics level, 

we therefore explored and analysed the transcriptomics data of cancer epithelial tissue, cancer 

stromal tissue, and healthy control epithelial and stromal samples using various bioinformatics 

techniques in the current proposed study. Figure 1 depicts the entire study's workflow in its 

entirety. 

 

Figure 1: Work Flow of the study representing the key steps 
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3.1 Exploratory Data Analysis  

Principal component analysis was used to retrieve the transcriptomics data (PCA). We used 

PCA to analyze the underlying variation across the three groups, which included samples from 

healthy control epithelial and stromal samples and cancer epithelial and stromal tissue. The 

fluctuation between all the circumstances, including TEC, EN, SCC, and SN, is shown in 

Figure 2A. The PC1 is 26%, the PC2 is 22%, and the PC3 is 5%. The PCA of this exploratory 

analysis makes it clear that something at the transcriptomics levels is responsible for the gene-

level differences between the TEC, EN, SCC, and SN samples. Importantly, there are 

significant differences between the TEC and EN samples, with PC1 being 18.9%, PC2 being 

11.4%, and PC3 being 9.4%, as seen in Figure 2B.Figure 2C represents variation between SCC 

and SN samples. The variation between 3 PCAs is given as PC1=20.3%, PC2=7% and 

PC3=4.8%.  

 

 

Figure 2: (A) PCA for All 4 conditions (Cancer Epithelial tissue, Cancer Stromal tissue 

and healthy control epithelial and stromal samples), (B) PCA For Cancer Epithelial 

tissue samples Vs Normal epithelial tissue samples, (C) PCA showing Variance among 

Cancer Stromal tissue samples and Normal epithelium tissue samples. 

3.2 Downstream Analysis  

The PCA results (Figure 2A to 2C) clearly show that the variation is greatest between the cancer 

stromal tissue and normal epithelial tissue samples (SCC vs SN). Hence, we compared tissue 

samples from cancer stromal tissue and normal epithelium (SCC versus SN). Because they 

displayed the second-highest degree of variation in the PCA plots, we also conducted a 

comparative study between samples of cancer epithelial tissues and normal epithelial tissue 

(TEC versus TN). SCC and SN samples are well distinguished in Figure 2C, indicating that 
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there is substantial transcriptome diversity between these groups. As a result, we contrasted the 

gene expression of cancer stromal tissues (SCC vs SN) and cancer epithelial tissues (TEC vs 

TN) in the downstream analysis with that of normal epithelial tissues. The principal 

components had improved and the two groups could now be separated from one another when 

these data were analyzed in a specific scatter plot. We can make some inferences based on the 

differences that were found between these two groups—Cancer Stromal Tissue vs. Normal 

Epithelium Tissue [SCC vs SN] samples and Cancer Epithelial Tissues vs. Normal Epithelium 

Tissue [TEC vs TN] samples. These acquired variations could have further effects on other 

biological levels, which could be studied at the level of gene regulation. 

3.3 Differential Genes Expression Analysis  

The examination of the differential gene expression between cancer epithelial tissues and 

normal epithelial tissue (TEC vs TN) samples was done, and the results were significant (p.adj 

value 0.1, Fold change >= 1.5). Of them, 46 genes were discovered to be considerably 

upregulated (p.adj value 0.1, Fold change >= +1.5) in TEC compared to EN, whereas 3060 

genes were discovered to be significantly downregulated (p.adj value 0.1, Fold change = -1.5). 

The analysis of the differential gene expression between the cancer stromal tissues and normal 

stromal tissues (SCC vs SN) samples looked at 22277 samples significantly (p.adj value 0.1, 

Fold change >= 1.5). These genes were divided into 62 that were considerably elevated (p.adj 

value 0.1, Fold change >= +1.5) in SCC compared to SN and 38 that were significantly 

downregulated (p.adj value 0.1, Fold change = -1.5). 

3.4 Clustering and Heat Map revealed variations among Epithelial and Stromal cancer 

tissues and Normal Control samples  

In order to determine whether the differentially expressed significant genes can form distinct 

clusters of Cancer stromal tissues vs. Normal stromal tissue [SCC vs. SN] samples and Cancer 

epithelial tissues vs. Normal epithelial tissue [TEC vs. TN] samples based on their gene 

expression, hierarchical clustering (visualized in the form of dendrograms) (17) was performed. 

As shown in Figures 3 and 4, respectively, the clustering analysis findings clearly reveal the 

unique clusters of the group of Cancer stromal tissues vs. Normal stromal tissue [SCC vs SN] 

samples and Cancer stromal tissues vs. Normal epithelial tissue [TEC vs TN] samples. 

Heatmap representing the expression pattern of significant genes among Cancer epithelial 

tissues vs Normal epithelial tissue [TEC vs TN] samples and Cancer stromal tissues vs Normal 

stromal tissue [SCC vs SN] samples, as shown in Figure 5 and 6 respectively. 
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Figure 3: Hierarchical Clustering results as dendrograms. Red text represents the 

clusters of the diseased (Cancer epithelial tissues) samples and Blue text clusters 

indicate the Control (Normal epithelial tissue) samples 

 

Figure 4: Hierarchical Clustering results as dendrograms. Red text represents the 

clusters of the diseased (Cancer stromal tissues) samples and blue text clusters indicate 

the Control (Normal stromal tissue) samples 
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Figure 5: Heat map showing the gene expression profiles of genes with notable 

differences in expression 

 

Figure 6: Heat map showing the gene expression profiles of genes with notable 

differences in expression 

It is very much evident from Figure 4 and 5, the clustering patterns formed by the dendrograms, 

indicating a very clear view of feature selection that could be performed between TEC vs EN 
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and SCC vs SN groups. Whereas using a feature selection algorithm of the inbuilt 

metaboanalyst software we scrutinized a heat map of top 25 differentially expressed genes to 

visualize its expression levels. Our heatmap is clearly able to portray the up-regulated and down 

regulated genes for the paired groups TEC vs EN and SCC vs SN. 

3.5 Pathways involved in the pathogenesis of Epithelial/Stromal cells driven Breast 

Cancer 

The investigation of gene ontologies was done to comprehend the biological significance of 

pathways. Though different pathways were impacted by the over-expressed and upregulated 

genes, it is interesting to note that many of these pathways represented biological ones, 

including the extracellular matrix organization pathway, the protein digestion and absorption 

pathway, and the platelet derived growth factor binding pathway (Figure 7A). The RNA 

binding routes, focal adhesion pathways, and SRP dependent co-translational pathways were 

the biological pathways that were altered as a result of the down-regulated genes (Figure 7B). 

To understand the biological importance of pathways, gene ontologies were investigated. It's 

interesting that, despite the fact that the over-expressed-upregulated genes affected a variety of 

pathways, many of these pathways represented biological pathways, such as the pathways for 

the organization of the extracellular matrix, collagen fibrils, and platelet derived growth factor 

binding (Figure 7C).Cytosolic-large ribosomal routes, cadherin binding pathways, and SRP 

dependent co-translational processes were the biological pathways that were altered as a result 

of the down-regulated genes (Figure 7D). 

 

Figure 7A: KEGG pathway and Gene ontology analysis of the Up-regulated genes [TEC 

vs EN samples] 
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Figure 7B: KEGG pathway and Gene ontology analysis of the Down-regulated genes 

[TEC vs EN samples] 

 

 

Figure 7C: KEGG pathway and Gene ontology analysis of the Up-regulated genes [TEC 

vs EN samples] 
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Figure 7D: KEGG pathway and Gene ontology analysis of the Down-regulated genes 

[SCC vs SN samples] 

 

4. DISCUSSION 

Stromal and epithelial cells make up the mammary gland, and they communicate with one 

another through the extracellular matrix (ECM). Both the induction and promotion of breast 

cancer can result from disruption of the epithelium-connection (18, 19). Stroma’s for the typical 

mammary gland to form and function correctly, there must be crosstalk between the breast 

epithelium and stroma. It's interesting to note that the mammary gland exhibits numerous 

characteristics linked to breast cancer during its developmental cycle (20). Furthermore, a large 

number of the elements linked to breast cancer are also essential for mammary growth (13, 21). 

If we have a better understanding of how these components function throughout normal 

development, we may be able to better understand how cancers begin and grow. In this study, 

we sought to demonstrate a strong relationship between cancerous tissues from the stroma and 

epithelium and a number of cellular and molecularly altered biological processes. 

In order to identify differences in gene expression between cancer stromal tissues vs. normal 

stromal tissue [SCC vs SN] samples and cancer stromal tissues vs. normal epithelial tissue 

[TEC vs TN] samples, RNA-Seq analysis was conducted on RNA-seq samples obtained from 

both groups. The cancer stromal tissues vs. normal stromal tissues [SCC vs SN] and the cancer 

stromal tissues vs. normal epithelial tissues [TEC vs TN] samples differ significantly at the 

gene level, as shown by the samples from both categories forming different clusters. 

Exploratory data analysis using PCA revealed this. This raises the possibility that there may be 

a trigger for the development of tumours at the transcriptome level and the progression of 



 
 
 
 

DOI 10.17605/OSF.IO/DG6TK 

1794 | V 1 8 . I 0 5  
 

metastatic breast cancer. The sequence of events that take place during this transition could be 

revealed with more study on the subject. 

We found that the Cancer epithelial tissues vs. Normal epithelial tissue [TEC vs TN] samples 

examined 22277 substantially (p.adj value 0.1, Fold change >= 1.5) based on differential gene 

expression analysis using Welch's T-Test. A total of 46 genes were discovered to be 

considerably upregulated (p.adj value 0.1, Fold change >= +1.5) in TEC compared to EN, while 

3060 genes were found to be significantly downregulated (p.adj value 0.1, Fold change = -1.5). 

In addition, 22277 significantly different gene expression patterns between cancerous stromal 

tissues and normal stromal tissues (SCC vs SN) samples were examined (p.adj value 0.1, Fold 

change >= 1.5). In SCC compared to SN, 62 of the total genes were found to be considerably 

upregulated (p.adj value 0.1, Fold change >= +1.5), while 38 of them were found to be 

significantly downregulated (p.adj value 0.1, Fold change = -1.5). 

Moreover, such visualization patterns of feature selection such as dendrograms and heatmaps 

help one to select proper machine learning algorithm to extract features. These visualization 

patterns, could later be used to work on breast cancer sub-features selection such as 

classification based on gender, age, race, ethnicity and pathophysiology. 

The development of tumours in epithelial/stromal tissues may have been influenced by possible 

dysregulation, according to a gene ontology analysis using Enrichr based on significant gene 

sets. This analysis revealed obvious involvement of genes in extracellular matrix organization 

pathways, protein digestion and absorption pathways, platelet derived growth factor binding 

pathways, RNA binding pathways, focal adhesion pathways, and SRP dependent co-

translational pathways. 

This study shows that as per our GO Cellular Component 2021 pathway Analysis, the most 

affected pathway is the collagen-containing extracellular matrix pathway. The associated genes 

with this pathway are COL11A1, COL1A1, COL1A2, COL3A1, COL5A1 and COL5A2 [on 

the basis of analysis done on the Enrichr software]as the key features that may substantially 

contribute to metastasis of breast cancer from epithelial cells to stromal cells in the mammary 

glands. Studies have shown that Collagen expression is increased during breast cancer 

development. Another evidence that moderate collagen expression is adequate to improve 

cancer cell stemness comes from the fact that overexpression of collagen in tumour cells had 

minimal impact on the development of the tumour microenvironment. Moreover, studies have 

demonstrated that collagen accelerates the development of breast cancer by increasing the 

stemness and anoikis resistance of cancer cells (22). Our study depicts the collagen genes such 

as COL11A1, COL1A1, COL1A2, COL3A1, COL5A1 and COL5A2 that are highly up-

regulated might be the possible cause of over production of collagen. According to recent 

studies, collagens can also affect the phenotypic and operation of a variety of immune cells that 

infiltrate tumours, including tumor-associated macrophages (TAMs) and T cells. Cancer cells' 

migratory and proliferative rate may be accelerated by collagen (23). Although collagen have 

the ability to keep the immune cells out of tumours and proliferation process, studies have also 

suggested that the loss or overly gain of collagen can allow tumors to grow more rapidly (23). 
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Anoikis is a type of programmed cell death that happens when a cell separates from the 

appropriate extracellular matrix and interferes with integrin ligation (24). It is a crucial 

mechanism for stopping the proliferation of dysplastic cells or their attachment to the wrong 

kind of matrix. Anoikis in cancer cells retards metastasis of cells to other sites. The survival of 

cancer cells during cancer spread depends on their resistance to detachment-induced anoikis, 

which is more prevalent in tumour initiating cells (25). Collagen, according to studies, 

accelerates the spread of breast cancer by increasing the stemness and anoikis resistance of 

cancer cells (26). There is still some question about whether gene dysregulation caused by 

collagen enhances anoikis resistance.  

Also, the over-expression of collagen producing genes in epithelial cancer tissue is an 

important biomarker. However, is it a result of a mutated gene or a signaling pathway is a 

crucial benchmark to cross? One of the main drivers of cancer cell behavior and a factor in how 

cancer cells interact with ECM elements is the heterogeneity of mutant genes (26, 27). The 

circumstances for collagen in the tumour matrix are also changed by the mutation of oncogenes, 

which are primarily split into tumour suppressor genes and proto-oncogenes. 

Mammary gland branching morphogenesis is significantly influenced by interactions between 

the epithelium and ECM. When ECM-regulating factors are inhibited or deleted, TEB 

production and ductal invasion are hampered. We are also aware that expression, by 

encouraging cancer cell invasion and stemness, may aid in the colonization and spread of 

cancer (27). Particularly, it is thought that the primary source of ECM protein in cancer tissue 

is cancer-associated fibroblasts (28). It has been discovered that fibroblasts considerably 

express collagen, and that it concentrates in the focal adhesion (29, 30). Yet further research is 

needed to determine what causes the precise up-regulated and down-regulated genes to target 

the collagen ECM pathway and collagen synthesis. 

It has been established that interstitial collagen and BM collagen play a part in the growth of 

breast tumours (31). In addition, it should be emphasized that in this study, 6 genes—

COL11A1, COL1A1, COL1A2, COL3A1, COL5A1, and COL5A2—were identified as crucial 

critical elements that may help breast cancer spread from epithelial cells to stromal cells in the 

mammary glands. This study was able to pinpoint a number of transcriptional genes whose 

function in the relationship between breast cancer metastasis and association remains mostly 

unknown. Further research into how they function might identify important indicators or 

pharmacological targets that could be used to treat breast cancer in conjunction with mammary 

epithelial and stromal cells. In order to detect early signs of cancer metastasis, these genes can 

be examined in breast cancer patients who may be subject to screening for the disease. 

Conclusively, our study is able to reveal some of the potential significant differences in gene 

expression between Cancer epithelial tissues vs Normal epithelial tissue [TEC vs TN] samples 

and Cancer stromal tissues vs Normal stromal tissue [SCC vs SN] samples. Interestingly, we 

also identified the affected biological pathways for both cancer stromal tissues vs. normal 

stromal tissues [SCC vs. SN] samples and cancer epithelial tissues vs. normal epithelial tissue 

[TEC vs. TN] samples as a result of the up-regulated and down-regulated genes. This most 

certainly provides a crucial hint about the cause of the deadly metastatic cancer condition. 
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5. FUTURE DIRECTIONS 

To determine the precise impact of breast cancer on genes like COL11A1, COL1A1, COL1A2, 

COL3A1, COL5A1, and COL5A2, much study will be needed in the future. To back up the 

aforementioned conclusions, more thorough investigation is required. It would be interesting 

to learn more about how the pathogenesis of breast cancer affects the extracellular matrix 

organization pathways, protein digestion and absorption pathways, platelet derived growth 

factor binding pathways, RNA binding pathways, focal adhesion pathways, and SRP dependent 

co-translational pathways as part of a future study. 

Moreover, in order to elucidate dendrograms and Heat-maps towards the potential of using 

their visualization patterns, as an important tool for precise feature selection. Such selected 

features could be then used further in order to demonstrate important gene level differences 

between different experimental groups. 
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