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Abstract 

The status of the failure mechanisms of other dependent components may change, rendering them worthless or 

preventing them from operating as a consequence of the failure of one component in a system exhibiting function-

dependent behavior. There has never been a mention of the failure mechanism level in any reliability research of 

functional dependency. This study employs a technique for evaluating component reliability that takes into 

account the behavior of failure mechanisms in components that have functional dependencies. These components 

include the second kind of trigger and suspension. For the purpose of accurately representing the behavior of the 

failure mechanism, the FMT and FDEP gates are employed. This work comes to a close with the development of 

a BDD model of the system as well as the presentation of certain reliability curves. A case study is used to describe 

the behavior of the failure mechanism inside the system. 
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1. INTRODUCTION 

Complex systems in aerospace, aviation, navy, and nuclear power plants have been the focus 

of substantial research into failure dependency in dependability modeling. When one part of a 

parallel system (such a pair of motors) fails, the other part will experience different stresses. 

The system's dependability decreases when the probability of joint failure rises due to a 

dependency failure [1]. As a result, a more accurate representation of the genuine reliability 

behavior of many complex systems may be achieved by a modeling method that incorporates 

dependent failure. The level of a system, the level of a component, and the level of a failure 

process or failure mechanism might all be dependent on one another in the event of a failure. 

A "common cause failure" (CCF) is a subset of dependent failures that occurs when two or 

more component functional fault states occur at the same time, or within a short period of time, 

due to a shared cause. This phenomenon has been the topic of substantial study on the system 

or component level [2].The dependability of binary systems, multi-state systems, and ulti-

trigger binary systems that are prone to global impact and selective effect generated by 

insufficient fault coverage has been investigated. These are the three types of systems that have 
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been explored. This has been done despite the availability of acceptable redundancy and fault 

coverage in each of these types of systems [3] [4].  

In addition to this, the dependability of competing failures and the selected renewal policy of 

failures that are sensitive to failure isolation and propagation effects are researched[5][6].If the 

trigger in a system fails, it will render the system's dependent components useless or inoperable. 

Many real-world systems exhibit functional dependency characteristics. Input-output (I/O) 

controllers allow computers to interact with devices like monitors, keyboards, and printers that 

are considered peripherals. I/O controller failure renders all attached peripherals useless [7] 

[8].  

1.1 Classification of failure mechanism correlation 

As a problem develops, progresses, and ultimately causes system failure, the complexity of the 

system's structure and loading situation means that each potential failure mechanism will affect 

the others. Several correlation kinds for non-repairable system failure mechanisms are 

presented in Fig. 1 from an engineering perspective. Here, we use the term "independent failure 

mechanism" to refer to failure mechanisms that are not reliant on any other factors other than 

the external environment, the applied stress, and the structure and material of the failing 

component [9]. Failure mechanisms that are independent of one another do not have their 

failures caused, launched, or impacted by any other failure mechanisms. Some separate failure 

mechanisms have varying expansion rates. The length of time it takes for the system to collapse 

will be established by how long it takes for the mechanism that fails first to evolve. Or, to put 

it another way, this procedure is competition, or these processes have a link with competition. 

 

Figure 1: “Classification of failure mechanism correlations for non-repairable system.” 

The event that sets off a chain reaction of failures, whether it be a change in environmental or 

loading conditions or some other unexpected occurrence, is known as a trigger. An increase in 

the rate of development of one failure mechanism will accelerate (or hinder) the pace of growth 

of other failure mechanisms. It's possible that many failure modes have the same impact on the 

faulty component, system, or location [10]. The cumulative impact of the damage will lead to 

an early breakdown. There is a link between accumulation and these processes. In order to take 
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into consideration all of the many ways to conduct harm, accumulation may be separated down 

into two subcategories: damage “accumulation and parameter combination.” Mechanical 

breakdown is meant by the former. For instance, a solder junction in an electronic component 

might shatter due to heat wear or vibration fatigue. How long a solder junction lasts is 

determined by how much damage it sustains over time. In addition to damage, failure 

mechanisms may cause a shift in performance metrics. The same parameters may shift due to 

many failure modes that all operate on the same area of the component [11]. The connection 

between them is a collection of parameters. Evaluation of the electronic system's dependability 

is challenging due to the interconnectedness of its failure modes. However, failing to account 

for these connections may provide misleading ratings. Decoupling techniques of these 

correlations are required to simplify this issue. 

 

2. REVIEW OF LITERATURE 

Chen et al., (2020) [12] examined that the existence of a wide variety of system configurations, 

surroundings, or load circumstances over the various phases of a phased-mission system (PMS) 

may lead to a change in the system's behavior. The cumulative damage of each failure 

mechanism throughout the course of operation is a significant consideration when evaluating 

the system's dependability from the standpoint of the emergence of failure mechanisms. To 

include four unique damage accumulation criteria into PMS reliability modeling, it is 

recommended to adopt a hierarchical model based on the BDD. Homogeneous failure 

mechanisms with a constant stress or combinational profile in one phase, and inhomogeneous 

failure mechanisms with the same damage effect in one phase or multiple phases, both meet 

the inhomogeneous damage accumulation criterion. The standard BDD model was expanded 

to include a third failure accumulation level via the use of an extended BDD. There were three 

distinct tiers involved: the failure mechanism, the phase, and the objective. A case study was 

used to simulate and examine the consistency and reliability of a phased-mission control and 

drive system. The results demonstrated that the considered method successfully represented 

the PMS's dynamic behavior and achieved system dependability through computational 

modeling. 

Ying et al., (2020) [13] studied that when it comes to controlling complex systems like 

airplanes or spaceships, fault tolerance design strategies are crucial. Even with sufficient 

redundancy, a system or subsystem may fail due to imperfect fault coverage (IFC). While 

Coverage Factor (CF) has been the primary focus of previous IFC research, system failure 

behaviors have been mostly absent. In the event of a low-layer failure, the upper layers may 

provide protection. Uncovered failure, yet, will have a functional and physical influence on the 

system's behavior if the coverage is inadequate. In this study, using a modeling and simulation 

technique that is based on BDD, the failure behavior and reliability of IFC in multi-layer 

systems are investigated. Additionally, a method for evaluating system reliability is proposed. 

An electronic controller for an aircraft engine equipped with IFC is examined to determine its 

failure behavior. The findings indicate that without considering the IFC, system behavior may 

change, maintenance intervals may be shortened, and maintenance costs would rise. 
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Selech et al., (2019) [4] analyzed that understanding the functional characteristics of a system's 

components over time is necessary in order to calculate the lifetime distributions of a technical 

item over time. This is because functional qualities change over time. Using a database of 

damage times 1for particular components, one can simply compute the average working time 

required to damage the element as well as the standard deviation for this time. The difficult 

part is selecting the appropriate sort of distribution to use.  

If the kind of damage distribution that has occurred to the individual components of the 

technical item is incorrectly recognized, there is a possibility that the results of the reliability 

and durability assessment of the system may include major inaccuracies. When insufficient 

data is available, it is common practice to make an informed estimate as to the shape of the 

damage density function or the cumulative distribution. This may be done in a number of 

contexts. When it comes to reliability theory, the most common distributions are the ones that 

are used to explain how to assess the dependability of tested items based on the occurrence of 

their first failure. The consequences of calculations were analyzed using a variety of different 

situations. Calculations were carried out for various portions of the train. 

Krishna et al., (2018) [15] stated that the vast majority of reliability models begin with the 

premise that both components and systems only ever suffer from a single kind of failure. 

However, many different systems, such as hardware, might fail in more than one way at the 

same time. Research done in the past on two-failure modes has led to the derivation of 

equations that may optimize reliability or reduce cost by determining the ideal number of 

components. The vast majority of these equations, if not all of them, are derived from models 

that make the simple assumption that component failures occur in a statistically independent 

way. In this article, models are built to evaluate the influence that correlation has on the 

reliability and cost of two-failure mode systems. Corresponding expressions for reliability and 

cost optimum designs are also given. In spite of the association, the instances we provide show 

that the method finds designs that are both reliable and economical to the greatest extent 

possible. 

Twum et al., (2018)[16]suggested thatin today's environment, optimizing system dependability is 

an absolutely necessary step in the process of assuring customer happiness, the competitiveness 

of enterprises, the safe and uninterrupted supply of services, and the safety of operations. When 

compared to other possible system configurations, complex systems are the most challenging 

to model in order to achieve maximum dependability.  

The purpose of this study is to assess the performance of a novel optimization strategy 

developed by the authors in the setting of a gas transport system (GCS) with two potential 

points of failure and high initial dependability. The authors devised this methodology to find 

solutions to the challenges presented by GCSs. The fault tree methodology was used to get the 

minimal cut sets that included components of the system.  

The reliability of these components was then formed into criteria, and both the associated cost 

of enhancing their reliabilities and the associated cost of maximizing their reliability were 

maximized. After that, Pareto optimum generic component reliabilities and system reliabilities 
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were determined. The findings suggest that the optimization approach might increase the 

system's dependability despite the fact that it was already very high, provided that the feasibility 

factor for increasing the reliability of a component was already rather high. 

Zhai et al., (2018) [17] studied that there are a wide variety of practical uses for phased-mission 

systems (PMSs). In order to complete its goal, a PMS must adapt to changing conditions in 

both system functioning and user demand. The inherent inter-phase dependency and dynamic 

system configuration (or structural function) and component behavior make reliability 

assessment of PMSs more difficult than that of single-phased systems. Although much work 

has gone into the examination of PMS reliability, gauging the dependability of a complex PMS 

with several phases remains challenging. To analyze the dependability of nonrepairable parallel 

PMSs under changing demand conditions, we provide a novel combinatorial model we call the 

aggregated binary decision diagram (ABDD). With the suggested method, PMSs with multiple 

phases may be efficiently analyzed by building a single ABDD model that accounts for failure 

combinations across all phases concurrently. In addition, the implications of fault-level 

coverage are considered within the framework of this method. In order to show how useful and 

effective the suggested ABDD-based method is, it is applied to examples of PMSs on a variety 

of scales. 

Souza et al., (2017) [18] examined that it is characteristic of mission-oriented or safety systems 

to include components that can fail in repairable and non-repairable ways. Partially repairable 

systems contain components that can fail in repairable and non-repairable ways, and this allows 

for the possibility of partial repairs being made for the operating scenario. In this study, both 

analytical and numerical solutions are presented for the problem of modeling the dependability 

of partly repairable systems.  

The modeling that has been suggested is based on Markov chains, and it consists of stand-by 

redundancy as well as a repair rate component. A discussion is held about the reasons for the 

restricted capability for repair. The modeling is used for dependability study of an electrical 

power system characteristic of Nuclear Power Plants. This system is supposed to be constituted 

of offsite power lines and redundant Diesel-generators with the goal of assessing an electrical 

power loss (blackout). It is shown that there is a gain as a consequence of the increase in repair 

capacity via the performance of a sensitivity analysis of the influence that the repairability rate 

has on availability and reliability. 

Li et al., (2016) [19] focused on a non-repairable system with multi- and cyclic-mission 

sequences and multi-mode failures in its individual components. Two possible failure states for 

a valve system are either not closing when it should or not opening when it should. A discrete-

time semi-Markov chain is built inside the time evolution framework to more accurately 

simulate the observable phenomena since the sojourn periods between succeeding missions 

may not satisfy the Markov condition. We propose an explicit form of the solution to the 

problem of system dependability by combining stochastic theory and the Z-transform.  

This allows for easier calculation and the acquisition of distributions of various stay lengths 

that readers demand, including those for perfect and imperfect operations. In additionally, one 
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of the valve systems has three-way switching, while the other has two. In order to further 

demonstrate the suggested concept and strategy, numerical examples are provided. 

Guo et al., (2016) [20] studied the process of mechanical systems deterioration that is caused 

by continuous wear and random shocks is investigated. These mechanical systems are formed 

of several subsystems, and they have been exposed to all of these factors. To calculate how 

long a sequence of systems can keep running, we developed a new mathematical model that 

accounts for the gradual degradation of individual components over time. In the past, 

researchers largely focused on simple, non-repairable systems without considering the effects 

of deterioration on the numerous smaller parts of the whole.  

It was their belief that the threshold degree of degradation must be met before a system may 

function normally. This research was primarily focused on non-repairable systems. This new 

model expands on the prior study by taking into consideration a non-repairable system as well 

as a repairable system that is susceptible to numerous degradation processes. Both kinds of 

systems will fail when the total deterioration of the system reaches a level that is higher than 

the threshold level. Through the use of a Monte Carlo simulation, the model is shown with 

reference to a particular scenario. 

Mi et al., (2016) [21] stated that modern electromechanical systems (EMSs) have become more 

complicated as a result of the rise of macro-engineering and mega-projects. Assessing a 

system's dependability becomes more challenging as its structure and failure mechanism get 

more complicated. Due to the complexity generated by the ever-evolving surroundings, lack of 

data, and random interference, engineering systems constantly exhibit uncertainty, dynamic, 

and nonlinear features.  

An in-depth analysis of how to evaluate the dependability of complex systems is provided in 

this work. It takes use of the benefits offered by the dynamic fault tree (DFT) for defining 

system behaviors in light of the dynamic features present inside the system. By factoring in 

field failures, test data, and design expertise, system unit lifetimes may be described as bounded 

closed intervals. When trying to estimate the parameters of life distributions, the COV approach 

is often used. To communicate the ongoing epistemic uncertainty brought on by the lack of 

comprehensive evidence, it is recommended to use an expanded probability-box (P-Box).  

Relevant reliability characteristics and indices have been derived by translating the DFT into 

an analogous Bayesian network (BN). The DFT model accounting for the system replacement 

strategy is then computed using the Monte Carlo (MC) simulation technique. This integrated 

method is shown to be more adaptable and productive in evaluating the dependability of 

complex dynamic systems. 

2.1 Comparison of reviewed technique 

There is a wide range of authors who studied on analysis failure Analysis of failure mechanisms 

on reliability of non-repairable systems and give their findings as seen in table 1. 
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Table 1: Comparison of reviewed technique 

Authors [Ref.] Technique Outcome 

Chen et al., (2020) 

[12] 
Phased-mission system 

The results demonstrated that the considered method 

successfully represented the PMS's dynamic behavior 

and achieved system dependability through 

computational modeling. 

Ying et al., 

(2020)[13] 
Multi-layer system 

The findings indicate that without considering the IFC, 

system behavior may change, maintenance intervals may 

be shortened, and maintenance costs would rise. 

Selech et al., 

(2019)[4] 
Reliability theory 

The consequences of calculations were analyzed using a 

variety of different situations. Calculations were carried 

out for various portions of the train. 

Krishna et al., 

(2018)[15] 

Two-failure mode 

system 

In spite of the association, the instances we provide show 

that the method finds designs that are both reliable and 

economical to the greatest extent possible. 

Twum et al., 

(2018)[16] 
Gas carrying system 

The findings suggest that the optimization approach 

might increase the system's dependability despite the 

fact that it was already very high, provided that the 

feasibility factor for increasing the reliability of a 

component was already rather high. 

Zhai et al., 

(2018)[17] 
ABDD 

With the suggested method, PMSs with multiple phases 

may be efficiently analyzed by building a single ABDD 

model that accounts for failure combinations across all 

phases concurrently. 

Souza et al., 

(2017)[18] 
Markov chain 

It is shown that there is a gain as a consequence of the 

increase in repair capacity via the performance of a 

sensitivity analysis of the influence that the repairability 

rate has on availability and reliability. 

Li et al., (2016)[19] Z-transform 
In order to further demonstrate the suggested concept 

and strategy, numerical examples are provided. 

Guo et al., (2016) 

[20] 
Monte carlo 

Both kinds of systems will fail when the total 

deterioration of the system reaches a level that is higher 

than the threshold level. 

Mi et al., 

(2016)[21] 
Monte Carlo 

This integrated method is shown to be more adaptable 

and productive in evaluating the dependability of 

complex dynamic systems. 

 

3. PROBLEM FORMULATION 

The rise in scientific understanding of the factors that cause electronic failure has led to an 

increased emphasis on reliability research for electronic systems using the physics-of-failure 

technique. The following presumptions are made in an effort to simplify the issue: The system 

is non-repairable with binary-state components, which indicates that none of the processes, 

elements, or items can recover from a failure or an unusable circumstance, and that the 

components are either working properly or have failed to do so. Additionally, the system is in 

one of two states: either functioning well or having failed to operate properly. In other words, 

the system is in a condition that may be described as binary. As a result of the inability of the 

effects of the dependent basic FMs to have an effect on the trigger FMs, it can be deduced that 
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after the trigger FMs have taken place, the dependent basic FMs will develop in a manner that 

is distinct from that of the trigger FMs. The amount of time it takes for the system to fail is 

defined by the first component that impacts its failure threshold. 

 

4. RESEARCH METHODOLOGY 

In a function dependent gate, the dependent components typically include a trigger and one or 

more dependent components. Failure of the trigger will result in failure of the dependent 

components; hence, failure of either the trigger or the dependent components will result in 

failure of the dependent components. Additionally, a failure of the trigger will result in the 

dependent components beginning their task. In a system in which one function is dependent on 

another, the failure of the trigger leads the dependent components to become worthless or 

inoperable. If both functions fail, the system is said to be inoperable. It is a sign that the safety 

mechanisms in the dependent components are currently in a state where they are either about 

to activate or are about to halt their operation. Following the failure of a trigger within the 

system, the structure of the system has been altered, which may cause some components to 

become inoperable while simultaneously causing others to become operational. If the 

components' modes of operation are different, this will inevitably result in the components' 

failure mechanisms being distinct. Additionally, the failure of the trigger will not instantly 

result in the system in a real system. The failure of one trigger component might cause certain 

dependent components to become useless since of the functional reliance between components. 

This causes the failure mechanisms of the dependent components to cease growing, which is a 

sort of behavior known as suspension in the context of failure mechanism behavior. The second 

kind of failure mechanism trigger refers to a scenario in which the failure of a trigger results in 

dependent components starting to function and the failure mechanisms starting to emerge. This 

form of failure mechanism trigger may occur in a number of different situations. 

4.1 Failure Mechanism Suspension 

Assuming that in a system with “k out of n components, all of the Bi components (i = 1, 2,..., 

n) are the same and are independent of one another. In addition, components A and Bx (where 

A is the trigger component and Bx are the dependent components) are connected with one 

another. Bx may have any value for x between 1 and n. In Figure 2, one can see both the failure 

mechanism suspension (MSPS) and the failure mechanism tree.” 

 

Figure 2: Logic diagram of failure mechanism suspension and FMT 
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The failure of any one of the p dependent components will result from the failure of any one 

of the p failure mechanisms. If we suppose that the component has a life of 𝜍,, then there will 

be a competing connection between the various failure modes. Ti to be the time of failure 

mechanism mj“(j = 1, 2, …, p) from initiating to resulting in component failure, so component 

lifetime𝜍, can be expressed by,” 

𝜁 = min⁡(𝑇1, 𝑇2,… , 𝑇𝑝)                                                     (1) 

Then failure probability of component 

𝐹𝐵𝑖(𝑡) is,𝐹𝐵𝑖(𝑡) = 𝑃(𝜉 ≤ 𝑡) = 1 − 𝑃(𝜉 > 𝑡)     (2) 

And 𝜁 can obtained in equation (1), then  

𝐹𝐵𝑖(𝑡) = 1 − 𝑃(min(𝑇1, 𝑇2,… , 𝑇𝑝) > 𝑡)                                                    (3)  

= 1 − 𝑃(𝑇1 > 𝑡, 𝑇2 > 𝑡, … , 𝑇𝑝 > 𝑡) 

The event of 𝑇𝑖 > 𝑡(𝑖 = 1,2, … , 𝑝) are independent, then  

𝐹𝐵𝑖(𝑡) = 1 − ∏ 𝑃(𝑇𝑗 > 𝑡)𝑝
𝑗                                                               (4) 

= 1 −∏ (1 − 𝐹𝑗(𝑡))𝑝
𝑗=1                                                                   (5)  

= 1 −∏ (1 − ∫ 𝑓𝑖(𝑡)
𝑡

𝑗=1
𝑑𝑡)𝑝

𝑗=1                                                            (6) 

In the above formula, 𝑓𝑖(𝑡) is the failure density function of mechanism mj. 

“Assume trigger A failure at Ttr, failure probability of this k-out-of-n system is” 

When 𝑡 < 𝑇𝑡𝑟 , 

𝐹𝑠(𝑡) = 1 − 𝑅𝑠(𝑡)                                                                          (7)  

Only if both trigger A and the system inherently are operating would the system be operational. 

As a result, the chance of the system failure is, 

𝐹𝑠(𝑡) = 1 − [
Pr(𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡⁡⁡𝐴⁡𝑑𝑜𝑒𝑠𝑛′𝑡𝑓𝑎𝑖𝑙𝑦) 𝑥

Pr(𝑠𝑦𝑠𝑡𝑒𝑚⁡𝑑𝑜𝑒𝑠𝑛′𝑡𝑓𝑎𝑖𝑙⁡𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡𝑙𝑦)
]                                             (8)  

4.2 Generation of Failure mechanism Trees 

A failure in MIU1 caused the development of a mechanism in M1, M2, and M3, which caused 

those mechanisms to be paused. A failure in MIU2 will cause the mechanism in M4 to come to 

a halt. Failure mechanism suspension is shown in Figure 3, parts a and b. In addition to this, 

MIU1 causes MIU2 to become activated, and the failure mechanisms of M4 begin to emerge. 

The second sort of failure mechanism trigger is shown in Figure 3's (c) and (d) subfigures. 



  
  
 
 

DOI 10.17605/OSF.IO/9F46H 

1634 | V 1 8 . I 0 7  
 

 

 

Figure 3: “Failure mechanism trees of components” 

4.3 Generation of Dynamic fault tree model 

The dynamic fault tree model shown in Figure 4 illustrates the particular connection that exists 

between the units. As can be seen in Figure 4, the DFT model has a total of four functional 

dependency gates; to put it another way, the system is comprised of a total of four functional 

connections. In the event that MIU1 fails, M1, M2, and M3 will either become inaccessible or 

useless, which would halt the development of the mechanisms. In the meanwhile, its failure 

will cause the MIU2 to develop its failure mechanisms, and M2, M3, and M4 will begin to 

function. After then, the rest of the memory units are activated by MIU2. In point of fact, due 

to the fact that the time gap between the transitions from the functional state of the main 

interface to the standby interface being so short, it is disregarded here. 

 

Figure 4: “DFT of the computer memory system” 

4.4 Generation of BDD model 

A channel from a no-sink node in the BDD model, which is seen in Figure 5, is given a label 

of either a "1" or a "0," indicating whether or not the component is operating properly. If the 

sink node for a route is marked with a '1' or a '0', then it will result in the system failing to 

operate or successfully doing so. 
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Figure 5: “BDD model of the system.” 

 

5. RESULT AND DISCUSSION 

After the three models have been established, it will be possible to receive some of the findings 

that were anticipated from the simulation. Because it was assumed in the previous section that 

M1, M2, and M3 are all the same thing, we will refer to them collectively as M from here on. 

RM (t) does not take into account the impact that the trigger has on the dependent components; 

instead, it displays the reliability function of M in three different scenarios as three separate 

curves in Figure 6. In addition, the reliability function of M is denoted by RM-1(t) when MIU1 

serves as the trigger, and RM-2(t) when MIU2 serves in that capacity. When examining the 

functional dependency, as shown in Figure 6, RM-1(t) reductions more quickly than RM (t), 

and the dependability of the same dependent component will change depending on the trigger 

used. 

 

Figure 6: Reliability function of memory units 
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Figure 7: Comparison of reliability function of M and M4 

 

Figure 8: Reliability function of system 

When both triggers are MIU2, the RM4-2(t) and RM-2(t) values are distinct from one another 

due to the disparate failure processes of the two components, as seen in Figure 7. The 

mechanism may be broken down into two distinct stages, as seen in Figure 8. The reliability 

function of this stage is denoted by the symbol RS-1 (t), and it is performed by the interface 

unit MIU1 while it is operating in the first phase as a trigger. The memory units M1, M2, and 

M3 that are attached to it serve as dependent components. At the second stage, MIU1 has failed; 

after this, MIU2 begins to operate, which enables M2, M3, and M4 to function; the reliability 

curve is denoted by the symbol RS-2 (t). When we associated the two stages, we discovered 

that the triggers and the components that were reliant on them were distinct from one another. 
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6. CONCLUSION  

In this study of research, the failure mechanisms are investigated on the presumption that there 

is a functional reliance in a system. In addition, the failure mechanism trigger of the second 

type and the failure mechanism suspension are also proposed as suitable solutions. Through 

this research, the BDD model, failure mechanism tree models of components, and a dynamic 

fault tree model for the computer memory system are all developed. We were successful in 

obtaining the reliability curves of both the components and the system, which not only supplied 

more information but also demonstrated the presence of a different sort of failure mechanism 

trigger in addition to failure mechanism suspension. 
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