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Abstract 

In Online Social Networks (OSNs), an efficient Influential User Prediction (IUP) is essential for different 

applications like sentiment analysis, online recommendation, etc. Among several prediction models, a Grey 

Wolf optimization with Graph Convolutional Neural Network (GW-GCNN) model can predict influencers by 

learning the latent vector representation of each netizen, including different centrality measures. But it models 

the netizen influence based on a fixed-size sub-network from the netizen’s social action log and topic 

distributions, as well as was highly reliant on the different topics. It cannot learn an entire huge corpus since 

merely a limited part of the information was annotated by Ground Truth (GT). Hence, this article proposes a 

unified unsupervised GW-GCNN with the Long Short-Term Memory (LSTM) model without GT supervision. 

It aims to design the netizen’s influence dynamics and discover the Influence Propagation (IPN) on multiple 

topics. The major contributions of this model are (i) measuring the time-aware and topic-related influences, (ii) 

modeling the IPN related to interval and topics using the Influence Attention-GCNN (IA-GCNN) that learns 

the netizen’s latent vector representation under multiple topics and (iii) extracting temporal influence and 

learning the Influence Scores (ISs) by using a matrix-adaptive LSTM that considers the unsupervised objective. 

Moreover, the learned ISs of every topic are summed and max-pooled over a period to get every netizen's IS 

for predicting influencers. At last, the extensive experiments reveal that the GW-GCNN-LSTM achieves 93.9%, 

92.5% and 92.4% accuracy for Facebook, Weibo and Twitter datasets, respectively during training, whereas it 

attains 94.1%, 93.5% and 94% accuracy for Facebook, Weibo and Twitter datasets, respectively during testing 

compared to the KSGC, Multi-view Influence (MvInf), InfACom-GCN and GW-GCNN algorithms. 

Keywords: Online social networking, User influence, GW-GCNN, Temporal influence, LSTM, unsupervised 

learning 

 

1. INTRODUCTION 

OSNs such as Facebook, Twitter, etc., have seen a rise in popularity due to their real-time, 

transparency and quick data exchange qualities [1]. Academics are investigating features such 

as data exchange and burst topic recognition, as well as user influence analysis. Influence 

regions of members are not limited to the neighborhood and individuals can manipulate others 

through the data exchange mechanism [2]. Netizen engagement on an OSN is shown in Fig. 1. 

People from various locations can connect as part of the retweet networks, and the influence 

of a netizen on nearby retweeters is visible during the retweet operation, but less visible for 

distant non-neighboring retweeters [3]. Influencers are netizens who have the power to capture 

the interest of others. It is essential to recognize and forecast influencers in OSNs, as it offers 

a diverse set of potential. Influencers must be able to draw in more followers and broadcast 

their knowledge, and prediction techniques should be able to accurately depict user input [4]. 
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Many studies have focused on calculating the effect of Twitter customers. Estimating influence 

enables the identification of netizens behavior that are critical for developing the system and 

offering remedies to relevant real-world tasks [5]. Academic evidence has metrics to calculate 

netizens influence, but in real-time OSNs it is difficult or expensive to get a full view of the 

information.  

 

Figure 1: User collaboration in OSNs and virtual influence design 

To combat these challenges, De Salve et al. [6] modeled the influencer prediction issue from 

the perspective of communities generated in OSNs and presented a technique that integrates 

centrality measures, data analytics and prediction schemes for IUP. Conversely, advanced 

feature selection schemes were needed with additional centrality measures for IUP. So, novel 

centrality measures were integrated with standard measures to fuse both node perspectives, 

while the most centrality measures were redefined for context and temporal dimensions. For 

this reason, Grey Wolf Optimization (GWO) [7-8] has been used to select measures from the 

temporal dimension of multiple periods, which were learned by a Convolutional Neural 

Network (CNN). However, only a limited group of IUs in OSNs were generated, which may 

affect the class distribution and accuracy of IUP. This issue was solved by the GCNN model, 

which learns the latent vector representation along with the different centrality measures and 

network topology for effective IUP [9]. However, the influence was only modeled based on 

fixed OSN topologies and topic allocations. Additionally, the nodes and edges in OSNs were 

numerous and changed rapidly, leading to supervised models that cannot learn complete huge 

corpora due to a limited part of the information being annotated with the GT. 

Therefore, a unified unsupervised model is proposed in this manuscript to solve the above-

mentioned issues in the supervised models by combining GCNN and LSTM networks. The 

main aim is to design the netizens influence dynamics and obtain the IPN on multiple topics 

because a netizens influence greatly depends on the topics. Initially, the time-aware and topic-
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specific influences are measured. Then, the IA-GCNN is used to model the IPN process related 

to intervals and topics by learning multiple latent vector representations of the netizens. 

Moreover, a matrix-adaptive LSTM is adopted through optimizing the unsupervised fitness 

factor to capture the temporal influence and learn the ISs. Those learned ISs of each topic are 

summed and max-pooled over a period to get all netizens ISs for the final prediction. The 

prediction output can be the top-k netizens with the maximum ISs. Thus, the unsupervised 

objective function can train the GW-GCNN-LSTM model without control from the GT. 

The residual sections are prepared as follows: Section 2 investigates related studies. Section 3 

explains the GW-GCNN-LSTM for IUP and Section 4 displays its effectiveness. Section 5 

concludes the study and recommends upcoming enrichments. 

 

2. LITERATURE SURVEY 

A new scheme called the Integrated Value of Influence (IVI) has been developed [10], which 

integrates the most significant topological features of the network to recognize its influential 

uses within it. But, its accuracy was not effective since it was not suitable for IUP in OSNs. A 

coreness-based VoteRank technique, namely NCVoteRank was developed [11] to discover 

spreaders (influential nodes) by considering the coreness value adjacent to the voting scheme. 

But, it needs additional metrics related to the network structures, tweets, etc., to increase the 

identification accuracy.  

The detection of opinion leaders in data dissemination for the social network [12] was 

presented depending on the different centrality metrics of netizens like in-degree, out-degree 

and Betweenness. But, it considers only the netizens centrality values, whereas additional 

metrics were needed to increase the accuracy of detecting influencers. A community detection 

scheme depending on deep learning [13] was developed. The feature matrix was obtained by 

the deep sparse autoencoder and the low-dimensional feature matrix was clustered by the K-

means algorithm to get the community structure. But, its accuracy was less since the low-

dimensional feature matrix cannot define the topological information of the network when 

using a fewer number of compressed layers. 

A new gravity model with effective distance [14] was presented to detect influential nodes 

according to the data merging and multi-level analysis. But its accuracy was less for large-scale 

networks. An improved gravity centrality measure [15] was developed based on the k-shell 

scheme called KSGC for detecting influential nodes in sophisticated OSNs. But its precision 

was less since it needs a weighted network with less time complexity. An influential nodes 

analysis scheme called LENC [16] was designed depending on the entropy and weight 

allocation of the edges linking it to determine the variance of edge weights and their impact on 

adjacent nodes. Conversely, the accuracy was not high for node influence sorting since it 

considers merely the impact of 1st and 2nd-order edges. 

A deep learning model called Multi-view Influence (MvInf) prediction network [17] was 

developed by combining multi-view learning and graph attention neural network to predict 

netizen behavior. But it lacks accuracy in predicting the influence between heterogeneous 
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nodes since it was based on assumptions that netizens were only impacted by other netizens to 

define the association between netizens (homogeneous network). 

A new technique called the Structure-based Identification Method (SIM) [18] was designed to 

detect the influential nodes depending on the system topology. However, several redundant 

elements were detected, which degrades the accuracy of creating a list of elements and their 

adjacent. Also, the splitting of influential nodes was complex while increasing the network 

dimension. An efficient algorithm called InfACom-GCN [19] was presented to identify the top-

r k-influential groups in a large official network. But the mean accuracy was not effective and 

needs attention neural network to lessen the difficulty of the detection process. 

In contrast with these previous researches, the proposed GW-GCNN-LSTM model can increase 

the accuracy of identifying influential netizens by learning various centrality metrics along with 

the time-aware topic-specific IS of each netizen in OSNs. 

 

3. PROPOSED METHODOLOGY 

In this section, the GW-GCNN-LSTM model is described in detail. Netizens data from OSNs 

is collected as a dataset, modeled and various centrality metrics extracted [7]. The GWO 

algorithm is applied to pick highly appropriate centrality metrics, which are provided to the 

unsupervised GCNN-LSTM for IUP. The notations utilized in this article are abridged in Table 

1. 

Table 1: Lists of notations 

Notations Explanation 

𝑁 Number of netizens 

𝑇 Total number of intervals 

𝐿 Number of interactions 

𝐺𝑡 Sequence of temporal attributed graph 

𝑉 Set of netizen nodes 

𝐴𝑡  Adjacency tensor 

𝑋𝑡  Netizen-topic affinity tensor 

𝑀  No. of topics in whole OSN 

𝐷 Topic embedding size 

𝑋𝑡(𝑖𝑗) Term frequency of top 𝐷 words in topic 𝑗 

𝐵 Time-aware and topic-related influence tensor 

𝒩𝑖,𝑡 Group of one-hop adjacent of node 𝑖 at interval 𝑡 

𝑒𝑖,𝑗 Attention coefficient 

𝐺𝐶𝑁𝑁𝜑 GCNN with parameters 𝜑 

𝑎𝑖,𝑗 Normalized attention coefficient 

𝐹𝑡
(0)

 Initial layer features 

𝐹𝑡(𝑖)
(𝑝)

 Output node representation 

𝜎(∙) ReLU or sigmoid activation function 

𝑊(𝑝) Parameter matrix 

𝐹𝑡 Combined feature tensor 
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𝐶𝑡 Centrality measure 

𝐼𝑡 Input gate of LSTM 

𝐺𝑡 Output gate of LSTM 

𝑃 Size of the LSTM’s hidden states 

𝒞𝑡 Cell state 

𝑂𝑡 Output gate of LSTM 

𝐻𝑡   Output state 

𝑊𝑥∙, 𝑊ℎ∙, 𝑊𝑐  Weights of LSTM layers 

𝑏𝑖 , 𝑏𝑓 , 𝑏𝑐 , 𝑏𝑜  Biases of LSTM layers 

𝑇𝑊  Time window 

𝐿(𝑊, 𝜆𝑙)  Objective function 

𝜁𝑖   Tradeoff factor 

𝑑𝑇′
  Documents 

𝑛𝑒  Learning epoch 

3.1 Problem formation 

Consider 𝑁 number of netizens and all netizens have both text and interaction data. For 

instance, on Twitter, the text data comprises the set of tweets that are used to define netizens’ 

affinity to specific topics. The interaction data is mined from the social actions between 

netizens like comments and retweets. If there are 𝑇 periods and 𝐿 kinds of interactions, then 

the social information is modeled as a series of time-based graphs, which are represented 

by𝐺𝑡 = (𝑉, 𝐴𝑡 , 𝑋𝑡), 𝑡 = 1, … , 𝑇, where 𝑉 denotes the group of netizens and|𝑉| = 𝑁. The 

interaction data is modeled as the adjacency tensor 𝐴𝑡 = ℝ𝑁×𝑁×𝐿 for 𝐿 kinds of relations in 𝑡𝑡ℎ 

period. The netizen-topic affinity tensor 𝑋𝑡 = ℝ𝑁×𝑀×𝐷 is the text data of 𝑁 netizens in 𝑡𝑡ℎ 

period, 𝑀 denotes the total topics in the whole OSN and 𝐷 defines the topic embedding size. 

According to this concept, the problem is formatted as follows: for the temporal attributed 

graphs 𝐺𝑡 = (𝑉, 𝐴𝑡, 𝑋𝑡), 𝑡 = 1, … , 𝑇 that define the text and interaction data in OSNs, the aim 

is to obtain the time-aware and topic-related influence tensor 𝐵 ∈ ℝ𝑁×𝑇×𝑀 for𝑉. 

3.2 Unified unsupervised GW-GCNN-LSTM model 

Fig. 2 illustrates the unified unsupervised GW-GCNN-LSTM model for IUP. First, the time-

based centrality measures are determined and the most relevant measures are chosen by the 

GWO. Textual and interactional data at each interval is also considered as input to the GCNN-

LSTM model. For textual data, a Core-Concept Seeded Latent Dirichlet Allocation (CC-

SeededLDA) [20] is used to implement topic extraction and find 𝐵 in all intervals. For the time-

based graphs of 𝐿 kinds of relations, the IA-GCNN is applied to model the IPN and acquire 

multiple relations. Then, the time-based influence is obtained via updating the unsupervised 

fitness factor in the matrix-adaptive LSTM network 

 

  



  
  
 
 

DOI 10.17605/OSF.IO/C95XB 

1946 | V 1 8 . I 0 7  
 

 

Figure 2: Workflow of unified unsupervised GW-GCNN-LSTM model for IUP 

3.2.1. Topic extraction 

In OSNs, a netizen normally has preferences in several topics. The topic extraction intends to 

get 𝐷-dimensional vector 𝑋𝑡(𝑖𝑗) that defines the embedding of netizen 𝑖 on topic 𝑗 at inter val 

𝑡. Thus, the data shared by a similar netizen in specific 𝑡 is concatenated as unified text, 

providing 𝑁 × 𝑇 text. To find the topic interest of netizens, the CC-SeededLDA technique is 

used that can recognize latent topics in the following way: 

1) Unsupervised: The text-topic allocation is achieved by the probability distribution with 

the Dirichlet prior. 

2) Supervised: The CC-SeededLDA takes group of seed words as a descriptive of the original 

topics. In this manner, the text-topic allocation is obtained in certain fields. 

3) Online: The model is progressively updated by earlier topic-word allocation as seed words 

to provide to CC-SeededLDA. 

In all intervals, 𝑀 topics are extracted and 𝑋𝑡 = ℝ𝑁×𝑀×𝐷 , 𝑡 = 1, … , 𝑇 are obtained. For netizen 

𝑖, 𝑋𝑡(𝑖𝑗) indicates the occurrences of top-𝐷 words in 𝑗. A maximum component in 𝑋𝑡 represents 

high interest that 𝑉 on the resultant topic. The unsupervised CC-SeededLDA is appropriate for 

learning GW-GCNN-LSTM from scratch, where it recognizes the topics in posts. The 

supervised and online ways are suitable for online learning of the GW-GCNN-LSTM model. 

3.2.2. Influence attention GCNN model 

The IA net is constructed to formulate the IPN and get multiple relations. 𝐴𝑡 , 𝑡 = 1, … , 𝑇, 

related to 𝐿 kinds of relations is obtained. Multiple kinds of relations have multiple roles to 

IPN. The GW-GCNN model considered a single kind of interaction (i.e., either comments or 

retweets of a netizen) or allocated a weight to relations based on field awareness. To solve this 

issue, this study proposes the IA-GCNN that fuses the node topic allocation with attention on 

the node’s local neighborhood attributes and edges in multiple OSNs. The IA method 

concentrating on a certain 𝑖 in 𝐺𝑡 is defined without generalization loss. Consider 𝒩𝑖,𝑡 is the 



  
  
 
 

DOI 10.17605/OSF.IO/C95XB 

1947 | V 1 8 . I 0 7  
 

group of single-hop adjacent of 𝑖 at 𝑡. In this study, the attention factors are adopted for netizen-

topics affinities and netizen-netizen relations as follows: 

𝑒𝑖,𝑗 = 𝐺𝐶𝑁𝑁𝜑(𝑋𝑡(𝑖), 𝑋𝑡(𝑗), 𝐴𝑡(𝑖𝑗:))       (1) 

In Eq. (1), 𝑗 ∈ 𝒩𝑖,𝑡, the attention coefficient 𝑒𝑖,𝑗 determines the associative impact that netizen 

𝑖 has on netizen 𝑗 and 𝐺𝐶𝑁𝑁𝜑 is the GCNN with variables 𝜑. To allow netizens with various 

neighborhood dimensions, the coefficients are normalized with softmax as: 

𝑎𝑖,𝑗 = 𝑒(𝑒𝑖,𝑗) ∑ 𝑒(𝑒𝑖,𝑘)
𝑘∈𝒩𝑖,𝑡

⁄         (2) 

In the IPN method, the OSN group broadcasts posts with several propagation cycles. So, the 

phenomena with several IA layers are modeled by combining the node’s topic allocation 

vectors in their neighborhood. 𝑋𝑡 is used as an entry node traits to the initial layer (𝐹𝑡
(0)

= 𝑋𝑡). 

The 𝑝𝑡ℎ IA layer is implemented by 

𝐹𝑡(𝑖)
(𝑝)

= 𝜎 (∑ 𝑎𝑖,𝑗𝐹𝑡(𝑗)
(𝑝−1)

𝑊(𝑝)
𝑗∈𝒩𝑖,𝑡

)       (3) 

In Eq. (3), 𝜎(∙) indicates the Rectified Linear Unit (ReLU) activation function, 𝐹𝑡(𝑖)
(𝑝)

∈

ℝ𝑁×𝑀×𝑑𝑛
(𝑝)

 defines the result node interpretations and 𝑊(𝑝) ∈ ℝ𝑑𝑛
(𝑝−1)

×𝑑𝑛
(𝑝)

 denotes the variable 

matrix. The combined feature tensor 𝐹𝑡 from the result of the last IA layer defines the netizen-

topic allocation after IPN. 

3.2.3. Matrix-adaptive LSTM 

Using 𝐹𝑡, 𝑡 = 1, … , 𝑇 and centrality measures 𝐶𝑡, 𝑡 = 1, … , 𝑇, a matrix-adaptive LSTM network 

is developed to get the time-aware and topic-related ISs for netizens. This LSTM is introduced 

to capture long-term dependencies, which certainly occur in temporal OSN information. The 

matrix-adaptive LSTM takes a series of matrices and provides the state matrices of each 

interval, operating as a many-to-many recurrent model. 

The functions in a matrix-adaptive LSTM cell are defined by neglecting the size 𝑁 as follows: 

𝐼𝑡 = 𝜎(𝐶𝑡𝐹𝑡𝑊𝑥𝑖 + 𝐻𝑡−1𝑊ℎ𝑖 + 𝒞𝑡−1𝑊𝑐𝑖 + 𝑏𝑖)      (4) 

𝐺𝑡 = 𝜎(𝐶𝑡𝐹𝑡𝑊𝑥𝑓 + 𝐻𝑡−1𝑊ℎ𝑓 + 𝒞𝑡−1𝑊𝑐𝑓 + 𝑏𝑓)     (5) 

𝒞𝑡 = 𝐺𝑡 ⊙ 𝒞𝑡−1 + 𝐼𝑡 ⊙ tanh(𝐶𝑡𝐹𝑡𝑊𝑥𝑐 + 𝐻𝑡−1𝑊ℎ𝑐 + 𝑏𝑐)    (6) 

𝑂𝑡 = 𝜎(𝐶𝑡𝐹𝑡𝑊𝑥𝑜 + 𝐻𝑡−1𝑊ℎ𝑜 + 𝒞𝑡𝑊𝑐𝑜 + 𝑏𝑜) (7) 

𝐻𝑡 = 𝑂𝑡 ⊙ tanh(𝒞𝑡)         (8) 

In Eqns. (4) – (8), 𝜎(∙) is the sigmoid function, i.e., 𝜎(𝑥) = 1
(1 + 𝑒−𝑥)⁄  and 𝐼𝑡, 𝐺𝑡 ∈ [0,1]𝑀×𝑃 

denote the input and output gates, where 𝑃 indicates the dimension of the LSTM’s hidden states 

and 𝒞𝑡 ∈ ℝ𝑀×𝑃 defines the cell state. The cell state acts as the data link between period 𝑡 − 1 

and 𝑡. The input and forget gates with ranges regularized to [0,1] assist the cell state regulator 
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how much data it must accept from the input (2nd term in Eq. (6)) and how much is inherited 

from the past period (initial term in Eq. (6)). 𝑂𝑡 ∈ [0,1]𝑀×𝑃 denotes the output gate and 𝐻𝑡 ∈
ℝ𝑀×𝑃 denotes the output state. The output gate filters data from 𝐶𝑡 and forwards it to the output 

state that acts as LSTM’s result. 

Typically, the LSTM performs sequentially with 𝐶𝑡𝐹𝑡 as the first input. 𝒞𝑡 at 𝑡 and 𝐻𝑡 can be 

recurrently fed into the LSTM cell at 𝑡 + 1. The weights 𝑊𝑥∙ ∈ ℝ𝑑𝑛
(𝑝)

×𝑃, 𝑊ℎ∙ ∈ ℝ𝑃×𝑃, 𝑊𝑐∙ ∈
ℝ𝑃×𝑃 and biases 𝑏𝑖, 𝑏𝑓 , 𝑏𝑐, 𝑏𝑜 ∈ ℝ𝑃 denote the network variables that are adjusted by 

backpropagation with the fitness factor. The influence tensor 𝐵 is acquired from the 

aggregation of 𝐻𝑡 after a max-pooling layer. 

Algorithm 1 GW-GCNN-LSTM model training 

Input: Facebook, Weibo and Twitter datasets 

Result: Top-k influencers 

1. Begin 

2. Get the dataset having retweets, comments, likes and netizen details; 

3. Apply data conversion on the training set to obtain multiple centrality measures of each 

netizen in different groups at different periods; 

4. Pick the relevant centrality measures using the GWO algorithm; 

5. Extract multiple topics using CC-SeededLDA and determine netizen-topic affinity tensor; 

6. Create the IA-GCNN to model the IPN over periods and topics; 

7. Obtain the latent vector representation of each netizen under different topics; 

8. Define unsupervised fitness factor and construct a matrix-adaptive LSTM; 

9. Learn temporal dependency, i.e., time-aware and topic-related ISs of netizens over 

different periods; 

10. Sum and max-pool the learned IS to get all netizens ISs; 

11. Predict the top-k influencers in a group; 

12. Determine 𝐿(𝑊, 𝜆𝑙) using Eq. (9) and update the weight matrices of the model; 

13. End 

This network can be adapted for online learning. At period 𝑇′, this network trained at 𝑇′ − 1 

is leveraged to determine the comprehensive 𝑋𝑇′ and the combined 𝐹𝑇′. The LSTM model is 

trained by initiating the variables (𝑊) from earlier LSTM at 𝑇′ − 1. To extract the time-based 

correlation, a time window 𝑇𝑊 is set as a hyperparameter: solely information attained at 
[𝑇′ − 𝑇𝑊, 𝑇′] is utilized to re-learn the LSTM, which enables the network to converge quicker 

than relearning from scratch. 
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3.2.4. Fitness Factor 

To determine the time-aware and topic-related influence, 3 hypotheses are considered while 

the unsupervised fitness factor is defined: (i) the netizens with a greater neighborhood and 

affinity must have a greater IS; (ii) active netizens are highly possible to contain a maximum 

IS compared to the idle netizens; (iii) the modification in the influence matrix must be smooth. 

According to these criteria, the absolute optimization dilemma is defined in Eq. (9), to get 𝐵 ∈
ℝ𝑁×𝑇×𝑀, 

max 𝐿(𝑊, 𝜆𝑙) = 

   ∑ ∑ ∑ 𝐴𝑡(𝑖𝑗:)(1 + ∑ 𝐴𝑡(𝑗𝑘:)
𝑁
𝑘=1 ) ∙ ‖𝐵(𝑖𝑡:)‖

2𝑁
𝑗=1

𝑁
𝑖=1

𝑇
𝑡=1

+𝜁1 ∑ ∑ ‖𝐹𝑡(𝑖)‖
2

∙ ‖𝐵(𝑖𝑡:)‖
2𝑁

𝑖=1
𝑇
𝑡=1 −

𝜁2 ∑ ‖𝐵(:𝑡:) − 𝐵(:𝑡−1:)‖
𝐹

2𝑇
𝑡=2

     

          (9) 

In Eq. (9), 𝐹𝑡 denotes the combined netizen-topic affinity tensor in period 𝑡, 𝑊 has the weight 

matrices in the LSTM and IA-GCNN and 𝜁𝑖 > 0, 𝑖 = 1,2 are the tradeoff factors to equilibrium 

3 elements. The higher value of 𝐵(𝑖𝑡𝑚) defines that 𝑖 has a greater influence on topic 𝑚 at 𝑡. A 

restraint is included to regularize netizen ISs on a topic for all periods. The Back-Propagation 

through Time (BPTT) scheme is used for model training and learning the netizen ISs. 

So, the GW-GCNN-LSTM model is extended to an online manner using the IA-GCNN and 

matrix-adaptive LSTM networks. The pseudocode for the online learning of the GW-GCNN-

LSTM model is given in Algorithm 2.  

The revised objective function is defined using 𝑇′ information received, 

max 𝐿(𝑊, 𝜆𝑙) = 

∑ ∑ ∑ 𝐴𝑡(𝑖𝑗)(1 + ∑ 𝐴𝑡(𝑗𝑘)
𝑁
𝑘=1 ) ∙ ‖𝐵(𝑖𝑡:)‖

2𝑁
𝑗=1

𝑁
𝑖=1

𝑇′

𝑡=𝑇′−𝑇𝑊

+𝜁1 ∑ ∑ ‖𝐹𝑡(𝑖)‖
2

∙ ‖𝐵(𝑖𝑡:)‖
2𝑁

𝑖=1
𝑇′

𝑡=𝑇′−𝑇𝑊
−

𝜁2 ∑ ‖𝐵(:𝑡:) − 𝐵(:𝑡−1:)‖
𝐹

2𝑇′

𝑡=𝑇′−𝑇𝑊+1

   

                    (10) 

Moreover, the learned IS of each topic is summed and max-pooled over a period to get each 

netizen’s IS, which is used to recognize top-k influencers in the labeled datasets. 
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Algorithm 2 Online learning of GW-GCNN-LSTM model 

Input: 𝐴𝑡
(𝑙)

, 𝐹𝑡  (𝑡 = 𝑇′ − 𝑇𝑊, … , 𝑇′), texts 𝑑𝑇′
, earlier CC-SeededLDA(𝑇′ − 1), earlier 

LSTM(𝑇′ − 1), learning epoch 𝑛𝑒and hyperparameters 𝑎, 𝜁1, 𝜁2, 𝑇𝑊 

1. Begin 

2. Get the topic-word allocation from CC-SeededLDA(𝑇′ − 1) as seed dissemination for 

CC-SeededLDA(𝑇′); 

3. Train CC-SeededLDA(𝑇′) using 𝑑𝑇′
; 

4. Determine 𝑋𝑇′(𝑖𝑗); 

5. Determine 𝐹𝑇′ using Eqns. (1) – (3); 

6. Obtain 𝑊 from LSTM(𝑇′ − 1) to LSTM(𝑇′); 

7. 𝒇𝒐𝒓(𝑒𝑝𝑜𝑐ℎ = 1; 𝑒𝑝𝑜𝑐ℎ ≤ 𝑛𝑒) 

8. 𝒇𝒐𝒓(𝑡 = 𝑇′ − 𝑇𝑊; 𝑡 ≤ 𝑇′) 

9. Determine 𝐼𝑡, 𝐺𝑡, 𝐶𝑡 , 𝑂𝑡, 𝐻𝑡 using Eqns. (4) – (8);  

10. 𝒆𝒏𝒅 𝒇𝒐𝒓 

11. Calculate 𝐿(𝑊, 𝜆𝑙) using Eq. (10); 

12. Back-propagate and modify 𝑊; 

13. 𝒆𝒏𝒅 𝒇𝒐𝒓 

14. End 

 

4. RESULTS AND DISCUSSIONS 

The effectiveness of the GW-GCNN-LSTM model is assessed by implementing it using Python 

code. Every experiment is executed on a machine with a quad-core Intel i5 2.20 GHz processor 

and 64 GB memory. 

4.1 Dataset description 

1. Facebook data from the Kaggle website is obtained, which comprises 4 .csv documents 

such as post.csv, comment.csv, like.csv and member.csv from the different open 

Facebook communities [21]. 

2. Weibo dataset: It is the most well-known OSN. The Weibo dataset has 1776950 netizens 

[22]. This study randomly selects 50000 examples to predict influential netizens. 

3. Twitter: It is a well-known OSN. This dataset includes 456626 netizens [23]. In this 

study, 50000 examples are randomly chosen for IUP. 
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4.2 Parameter Settings 

The proposed GW-GCNN-LSTM samples the sub-net with a random walk with an activation 

probability of 0.75 and a predetermined dimension of 60. The vector size is 64 and a 64-

dimensional net embedding vector is pre-learned by auto-encoder schemes. The 3-layer GCNN 

architecture is used for training, with 64 hidden neurons in the initial and second levels, and 2 

hidden neurons in the output level. 60% and 40% examples of sampling data are chosen for 

learning and testing, and the mini-batch dimension is assigned to 512. In the influence 

dissemination model, 5000 simulations are considered after choosing a new netizen and 

including the seed set, and the observation window is set from 1-10-2022 to 28-2-2023. 

The matrix-adaptive LSTM is trained by the Adam optimizer with a training rate of 0.0001, 𝛽1 

is 0.9 and 𝛽2 is 0.999. The tradeoff factors in Eq. (9) (𝜁1, 𝜁2) are examined from 10−4 to 104 

with a step of 101. The weight matrices in the GCNN-LSTM model are initialized by Xavier 

initialization [24]. Table 2 lists the parameters set for existing models: GW-GCNN [9], KSGC 

[15], MvInf [17] and InfACom-GCN [19] to compare the IUP efficacy. 

Table 2: Parameter settings for existing models 

Algorithms Parameters Range 

KSGC [15] 

No. of nodes 1000 

Mean degree 50 

Maximum degree 550 

Mixing variable of the community structure 0.7 

MvInf [17] 

Learning rate 0.01 

Weight decay 5e-5 

Dropout rate 0.5 

InfACom-GCN [19] 

Training rate 0.1 

Dropout rate 0.2 

No. of epoch 100 

GW-GCNN [9] 

Population size of grey wolf 100 

Maximum iteration 250 

GCN hidden neurons 64 

GCN dropout rate 0.5 

No. of GCN layers 3 

GCN activation function ReLU 

Loss function Cross-entropy 

Batch size 512 

No. of epoch 5000 

Initial learning rate 0.5 

Learning rate decay 0.95 

The existing models are also tested using the given Facebook, Weibo and Twitter databases and 

evaluated to realize the efficiency of the proposed GE-GCNN-LSTM model. 
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4.3 Evaluation metrics 

The IUP performance is evaluated by different metrics given below. 

• Precision: It determines the number of proper positive predictions achieved. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑃+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
                  (11) 

• Recall: It determines the number of proper positive predictions achieved over each positive 

prediction that could have been achieved. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
                  (12) 

• F-measure: It is defined by 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                  (13) 

• Accuracy: It is calculated according to the variance between the predicted and expected 

values. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                  (14) 

4.4 Performance analysis for training phase 

 

Figure 3: Analysis of various IUP models on Facebook dataset during training 

In Fig. 3, comparison of proposed and existing IUP models on the Facebook dataset is validated 

in terms of different metrics. It is shown that the precision of GW-GCNN-LSTM model is 

increased by 21.74%, 12%, 7.32% and 1.99% compared to the KSGC, MvInf, InfACom-GCN 

and GW-GCNN models, respectively. The recall of GW-GCNN-LSTM model is increased by 

22.32%, 12.76%, 7.7% and 2.74% compared to the KSGC, MvInf, InfACom-GCN and GW-

GCNN models, respectively. The f-measure of GW-GCNN-LSTM model is increased by 

22.03%, 12.38%, 7.51% and 2.37% compared to the KSGC, MvInf, InfACom-GCN and GW-

70

75

80

85

90

95

P
re

ci
si

o
n

R
e

ca
ll

F-
m

e
as

u
re

A
cc

u
ra

cy

R
an

ge
 (

%
)

Metrics

Facebook Dataset

KSGC

MvInf

InfACom-GCN

GW-GCNN

GW-GCNN-
LSTM



  
  
 
 

DOI 10.17605/OSF.IO/C95XB 

1953 | V 1 8 . I 0 7  
 

GCNN models, respectively. Also, the accuracy of GW-GCNN-LSTM model is increased by 

21.95%, 12.32%, 7.56% and 2.62% compared to the KSGC, MvInf, InfACom-GCN and GW-

GCNN, respectively. 

Fig. 4 portrays a comparison of proposed and existing IUP models when training by the Weibo 

dataset in terms of different metrics. It is shown that the GW-GCNN-LSTM increases the 

precision by 16.05%, 11.64%, 7.18% and 2.47% compared to the KSGC, MvInf, InfACom-

GCN and GW-GCNN models, respectively. The GW-GCNN-LSTM model increases the recall 

by 16.1%, 12.1%, 7.4% and 3.2% compared to the KSGC, MvInf, InfACom-GCN and GW-

GCNN models, respectively. The GW-GCNN-LSTM increases the f-measure by 16.06%, 

11.95%, 7.37% and 2.91% compared to the KSGC, MvInf, InfACom-GCN and GW-GCNN 

models, respectively. Also, the GW-GCNN-LSTM increases the accuracy by 15.63%, 11.85%, 

7.43% and 2.78% compared to the KSGC, MvInf, InfACom-GCN and GW-GCNN, 

respectively. 

 

Figure 4: Analysis of various IUP models on OAG dataset during training 

 

Figure 5: Analysis of various IUP models on Twitter dataset during training 
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In Fig. 5, comparison of proposed and existing IUP models when training by the Twitter dataset 

is shown in terms of different metrics. It is shown that the precision of GW-GCNN-LSTM 

model is increased by 17.27%, 13.18%, 7.18% and 2.25% compared to the KSGC, MvInf, 

InfACom-GCN and GW-GCNN models, respectively. The recall of GW-GCNN-LSTM model 

is increased by 17.32%, 13.7%, 7.72% and 3.02% compared to the KSGC, MvInf, InfACom-

GCN and GW-GCNN models, respectively. The f-measure of GW-GCNN-LSTM model is 

increased by 17.29%, 13.51%, 7.51% and 2.69% compared to the KSGC, MvInf, InfACom-

GCN and GW-GCNN models, respectively. Also, the accuracy of GW-GCNN-LSTM model is 

increased by 16.96%, 13.65%, 7.94% and 2.78% compared to the KSGC, MvInf, InfACom-

GCN and GW-GCNN models, respectively. 

4.5 Performance analysis for testing phase 

 

Figure 6: Analysis of various IUP models on Facebook dataset during testing 

Fig. 6 portrays the comparison of proposed and existing IUP models when testing by the 

Facebook dataset. It is observed that the precision of GW-GCNN-LSTM model is improved by 

21.7%, 12.3%, 6.9% and 1.2% compared to the KSGC, MvInf, InfACom-GCN and GW-

GCNN, respectively. The recall of GW-GCNN-LSTM model is improved by 21.03%, 10.4%, 

7.2% and 1.7% compared to the KSGC, MvInf, InfACom-GCN and GW-GCNN models, 

respectively. The f-measure of GW-GCNN-LSTM model is enhanced by 21.4%, 11.3%, 7.05% 

and 1.47% compared to the KSGC, MvInf, InfACom-GCN and GW-GCNN, respectively. 

Also, the accuracy of GW-GCNN-LSTM model is improved by 19.42%, 11.23%, 6.93% and 

1.4% compared to the KSGC, MvInf, InfACom-GCN and GW-GCNN models, respectively. 

Accordingly, the GW-GCNN-LSTM model outperformed other IUP models in both training 

and testing phases by learning time-aware and topic-specific influence of each netizen over a 

period without GT supervision. 

In Fig. 7, a comparison of proposed and existing IUP models is illustrated when testing by the 

Weibo dataset. It is observed that the precision of GW-GCNN-LSTM model is 23.2%, 13.51%, 

7.44% and 3.7% higher than the KSGC, MvInf, InfACom-GCN and GW-GCNN models, 
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respectively. The recall of GW-GCNN-LSTM model is 22.05%, 13.28%, 7.02% and 3.33% 

higher than the KSGC, MvInf, InfACom-GCN and GW-GCNN, respectively. The f-measure 

of GW-GCNN-LSTM model is 22.62%, 13.33%, 7.17% and 3.46% higher than the KSGC, 

MvInf, InfACom-GCN and GW-GCNN models, respectively. Also, the accuracy of GW-

GCNN-LSTM model is 22.54%, 13.2%, 7.47% and 3.66% compared to the KSGC, MvInf, 

InfACom-GCN and GW-GCNN models, respectively. Thus, the GW-GCNN-LSTM can 

perform both training and testing phases efficiently compared to the existing IUP models by 

learning time-aware and topic-specific influence of each netizen. 

 

Figure 7: Analysis of various IUP models on OAG dataset during testing 

 

Figure 8: Analysis of various IUP models on Twitter dataset during testing 

Fig. 8 portrays the comparison of proposed and existing IUP models when testing by the Twitter 

dataset. It is observed that the precision of GW-GCNN-LSTM is improved by 22.82%, 15.51%, 

8.76% and 3.44% compared to the KSGC, MvInf, InfACom-GCN and GW-GCNN, 

respectively. The recall of GW-GCNN-LSTM is improved by 21.6%, 14.2%, 7.7% and 3.1% 
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compared to the KSGC, MvInf, InfACom-GCN and GW-GCNN models, respectively. The f-

measure of GW-GCNN-LSTM is enhanced by 22.3%, 14.9%, 8.23% and 3.32% compared to 

the KSGC, MvInf, InfACom-GCN and GW-GCNN, respectively. Also, the accuracy of GW-

GCNN-LSTM is improved by 21.6%, 13.9%, 8.1% and 3.3% compared to the KSGC, MvInf, 

InfACom-GCN and GW-GCNN, respectively. So, the GW-GCNN-LSTM model outperformed 

other IUP models in both training and testing phases by learning time-aware and topic-specific 

influence of each netizen over a period. 

 

5. CONCLUSION 

This study developed a unified unsupervised GW-GCNN-LSTM model for IUP. It used the IA-

GCNN and matrix-adaptive LSTM to get the time-aware and topic-related ISs of each netizen 

at different periods. The learned ISs of every topic were summed and max-pooled over a period 

to obtain all netizen's ISs. Based on the final IS, the top-k influencers in the OSNs were 

predicted. Finally, the simulation results proved that the GW-GCNN-LSTM has a 94.1%, 

93.5% and 94% accuracy for Facebook, Weibo and Twitter datasets, respectively compared to 

the other models for IUP in OSNs. 
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