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Abstract 

As a characteristic of informationally inefficient economies, asymmetric information has frequently led to 

distorted financial markets. By using stochastic optimization techniques, we constructed a model that addresses 

the problem of mispricing financial instruments in markets that do not conform to the traditional Markowitz 

portfolio optimization. The model does not suffer from adverse observations and is hence insensitive to sudden 

changes in the model parameters. We propose forecasting future stock market returns using the model constructed 

under informationally inefficient markets. Using data from BofA Merrill Lynch, we estimated an optimal 

forecasting model for this work. The sample period is from December 1998 to November 2017, and the forecast 

period starts 14 years after the beginning of the sample. We conclude that there is substantial predictability in 

stock market returns, as with our constructed model, an investor could have timed the market and gained up to 

6.11% over the course of five years. 
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1. INTRODUCTION 

The selection of portfolios and asset prices are currently the key topics in financial markets. If 

the market is efficient, it is anticipated that asset prices will disclose already-known information 

and that all investors will have an equal amount of knowledge to choose their portfolios (Bekele 

et al. (2018)). But most of the financial markets that exist in today’s real-world markets are 

inefficient. An inefficient market is one that does not succeed in incorporating all available 

information into a true reflection of an asset’s fair price. Market inefficiencies exist due to 

information asymmetry, transaction costs, market psychology, and human emotions, among 

other reasons. In each investment, investors seek larger returns relative to their initial capital 

invested, but occasionally they encounter difficulties in determining how to create the finest 

trading methods to satiate their desire to profit from a specific invested asset.  

In the financial market, returns are usually accompanied by risk (the adage is that the greater 

the risk, the greater the return). The ability to manage risk in the financial market is crucial for 

achieving higher future profits (Komunte et al. (2021); Yang et al. (2022); Islam et al. (2016); 
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Andersen et al. (2007)). When predicting stock market returns, there is a substantial body of 

literature. Ferreira & Santa-Clara (2011) used the same data as Welch & Goyal (2008) for the 

1927–2005 period and applied the sum-of-the-parts forecasting approach. Their method’s 

performance clearly outperforms both the historical mean and conventional predictive 

regressions. 

Economists have suggested a whole range of predictive variables that investors could or should 

use to predict the future stock market return. Some of those variables (with the author(s) who 

applied the same in brackets) are: the consumption, wealth, and income ratio (Lettau & 

Ludvigson (2001)); the book-to-market ratio (Kothari & Shanken (1997) and Pontiff & Schall 

(1998)); the dividend price ratio and the dividend yield (Menzly et al. (2004), Lewellen & 

Shanken (2002), Campbell & Yogo (2006), Campbell et al. (2002), and Hodrick (1992)); the 

short-term interest rate (Ang & Bekaert (2007), Campbell (1987), and Hodrick (1992)); the 

earnings price ratio and dividend earnings (payout) ratio (Lamont (1998)); inflation (Fama 

(1981), Campbell & Vuolteenaho (2004), and Vuolteenaho et al. (2004)); the corporate issuing 

activity (Boudoukh et al. (2008) and Baker & Wurgler (2000)); the stock market volatility (Guo 

(2006) and Ghysels et al. (2005)). 

All of these investigations discover proof of return predictability in the sample. These results, 

however, have drawn criticism from a number of authors who contend that the forecasting 

variables’ persistence and the link between their innovations and returns may bias the 

regression coefficients and have an impact on t-statistics (Torous et al. (2004), Lewellen (2004), 

Stambaugh (1999), Cavanagh et al. (1995), and Indrayono (2019)). 

 

2. METHODOLOGY 

2.1. The Model 

We consider a maximization equation as given by Zhang (2007), and we assume there is a zero 

consumption throughout the investment period and we incorporate the skew Brownian motion. 

The maximization problem is then given by 

max
π∈𝒜0(x)

E [u(Xπ(T))]  

s.t 

dXπ(t) = Xπ(t) [R(t)dt + πT(t)σ(t) (ϕ(t)dt + μ(Z(t))dt + dW(t) + (2p − 1)dLt
0(Z))] 

   Xπ(0) = x,                                                                                                                                                          (1) 

With 

𝒜0(x) = {(π, 0) ∈ 𝒜(x): E[u(Xπ(T))] < ∞} 

And  

                                                               u(x) =
x1+γ

1+γ
,  γ ≠ −1.                                                                                  
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Where, 

π represents the investment, Xπ(t) ≥ 0 is the wealth process, x > 0 is the initial capital of an 

investor, ϕ(t)is the market price of risk, R(t) is the nominal interest rate, W(t)  is the Brownian 

motion, σ(t) is the volatility, u(⋅)  represents the investor’s utility function, 𝒜(x) represents 

the class of admissible pairs, Lt
0(Z) is the symmetric local time of Z(t), and Z(t) is the skew 

Brownian motion with a skew parameter p. 

Remark 2.1.  

The terms skew Brownian motion Z(t), symmetric local time Lt
0(Z), and skew parameter p 

have been explained in detail by Gairat & Shcherbakov (2017). 

Maximization equation (1) is equivalent to 

max E
G

(u(G)) 

s.t 

                                                                        E(P(T)G) = x                                                                   (2) 

WhereG, denotes all possible ℱ(T)-measurable contingent claims, given by 

G = Xπ(T) 

And P(t) is the stochastic discount factor defined by 

 

                        P(t) = exp{− ∫ R(s)ds
t

0
−

1

2
∫ ||

t

0
ϕ(s)|| d2 s − ∫ ϕ𝒯(s)dW(s)}

t

0
.                       (3) 

Following the same procedures as in Zhang (2007), the optimal wealth was found to be 

 

                                              Xπ∗
(t) =

xe
−(

γ+1
γ

) ∫ ϕ𝒯(s)dW(s)
t
0 −

1
2

(
γ+1

γ
)

2
∫ ||ϕ(s)||

t
0

2
ds

exp{− ∫ R(s)ds
t

0 −
1

2
∫ ||ϕ(s)||

t
0

2
ds−∫ ϕ𝒯(s)dW(s)}

t
0

                         (4)    

Suppressing the dependence on t as in Cvitani´c & Karatzas (1992) and Cvitani´c et al. (2006), 

equation (5) can be written as   

Xπ∗
(t) =

xe
(

γ+1
γ

) ∫ ϕdW(s)
t

0 −
1
2

(
γ+1

γ
)

2

∫ ||ϕ|
t

0 |2ds

exp{− ∫ Rds
t

0
−

1
2 ∫ ||ϕ||

t

0

2
ds − ∫ ϕdW(s)}

t

0

 

=
xe

(
γ+1

γ
)ϕW(t)−

1
2

(
γ+1

γ
)

2
||ϕ|| t2

exp{−Rt −
1
2 ||ϕ|| t2 − ϕW(t)}
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                                                        = (e
(Rt+

1

2
||ϕ||2t+ϕW(t))

) (xe
−(

γ+1

γ
)ϕW(t)−

1

2
(

γ+1

γ
)

2
||ϕ|| t2

) 

= xe
(Rt−

1
2γ2(2γ+1)ϕ2t−

1
γ

ϕW(t))
 

                                                Xπ∗
(t) = xe

(Rt−
1

2γ2(2γ+1)(
μ−R

σ
)

2
t−

1

γ
(

μ−R

σ
)W(t))

                                   (5)                                             

This is the optimal wealth process, and hence the optimal value process of the portfolio (since 

we have a self-financing portfolio with zero consumption). So, we can conclude our result in 

the following lemma. 

Lemma 2.1.  

For power utility given in equation (1), the optimal wealth process (optimal value process) of 

the portfolio is given by 

                                            Xπ∗
(t) = xe

(Rt−
1

2γ2(2γ+1)(
μ−R

σ
)

2
t−

1

γ
(

μ−R

σ
)W(t))

                                          (6) 

2.2 Forecasting future stock returns 

It is possible to create the paths that can be utilized to represent the stock market returns using 

the wealth process described in Lemma 2.1 above. The distribution of logarithmic returns is 

preferable for comparison and evaluation of investment performances even though the 

distributions of simple/arithmetic returns and logarithmic returns are very similar (Panna 

(2017)). To obtain the model parameters, we used the data set from BofA Merrill Lynch titled 

BofA Merrill Lynch Asia Emerging Markets Corporate plus Sub-Index Total Return Index 

Value (with series ID: BAMLEMRACRPIASIATRIV). The sample period is from December 

1998 to November 2017. The forecast period starts 14 years after the beginning of the sample, 

i.e., in January 2013, and ends in November 2017. 

Define the logarithmic returns by 

ξt = ln (
St+1

St
) 

                                                                           = lnSt+1 − lnSt 

Where,  

 ξt Is the today’s stock market return, St+1 is the yesterday’s stock market closing price and St 

is the today’s stock market closing price. 

 

3. RESULTS AND DISCUSSION  

The return and risk from the real data were calculated and discovered to be μ =
0.0060058717 andσ = 0.01710579, respectively. These numbers were then used to forecast 

the stock market return for the following five years using the constructed model (i.e., equation 
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model 6). The predicted return was determined to be μ1 = 0.003615073 (with an associated 

risk of σ1 = 0.006302927), whereas the actual data showed a return μ2 = 0.003406941 (with 

an associated risk of σ2 = 0.009725064). The percentage error between the predicted stock 

return and the actual stock return was found to be 6.11% (a very small percentage error) 

indicating that our model predicts almost the same value of the stock market return (there is 

substantial predictability in the stock market returns). From the result, we can conclude that 

our constructed model is an appropriate one as it produces high returns with less risk (with our 

constructed model, an investor could have timed the market and gained up to 6.11% over the 

course of five years). 

Table 1: Parameters Used To Forecast Stock Market Returns 

Parameter Definition Value 

γ Risk-aversion coefficient 0.5 

μ Average stock return 0.006005871 

σ Standard deviation (risk) 0.01710579 

μ1 Forecasted stock return for five years 0.003615073 

σ1 Standard deviation (risk) 0.006302927 

μ2 Actual stock return for five years 0.003406941 

σ2 Standard deviation (risk) 0.009725064 

x Initial capital 1000 

R Interest rate 0.01 

PE Percentage error 6.11% 

 

              
 Figure 1: Forecasted returns vs actual returns from the year 2013 

 

4. CONCLUSION 

We apply our constructed model to forecast stock market returns. Our method leads to statistical 

and economic gains for an investor. From the results, we observed that there is substantial 

predictability in stock market returns, as with our constructed model, an investor could have 

timed the market and gained up to 6.11% over the course of five years. 
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