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Abstract 

Petroleum, natural gas, and coal are examples of conventional energy sources that have been identified as 

significant sources of greenhouse gas emissions that contribute to global warming. The ECOWAS states have an 

abundance of energy resources, including solar, wind, biomass, hydro, and others, which are used to supply 

domestic energy needs and promote economic growth. This paper estimates the impact of determinants of 

renewable energy such as access to clean fuel & cooking technology, access to electricity, energy intensity level, 

total electricity output, and total final energy consumption on the consumption level of renewable energy using 

spatial panel analysis in 14 ECOWAS states covering the period of 1990 – 2018. The results indicated that access 

to clean fuel & cooking technology, access to electricity, total electricity output, and carbon (IV) oxide have a 

negative influence on renewable energy consumption, while energy intensity level and total final energy 

consumption have a positive effect. As such, reductions in access to clean fuel & cooking technology, access to 

electricity, total electricity output, and carbon (IV) oxide will increase renewable energy consumption in 

ECOWAS states. Due to the sustainability of renewable resources and their suitability for installation in 

communally owned mini-grids, renewable energy technology may offer a feasible solution to ECOWAS states 

long-standing energy challenges. 
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1. INTRODUCTION 

Conventional energy sources such as petroleum, natural gas, and coal have been identified as 

important contributors to greenhouse gas emissions, which contribute to global warming. 

Energy resources such as solar, wind, biomass, hydro, and others abound in West Africa and 

are used to meet domestic energy needs and spur economic growth [1].  There are several types 

of energy resources, including fossil fuels, nuclear energy, and renewable energy. Renewable 

energy is energy derived from natural sources such as sunshine, tides, biomass, wind, and 

geothermal energy. Integration of renewable energy into the electrical system, smart grid 

design, and grid storage preparation are some of the primary concerns in emerging countries 

[2]. The nature and source of renewable energy used in West Africa, which is primarily wood 

biomass, slow economic progress [3].  
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According to some studies, population expansion is reflected in energy consumption, with a 

large portion of that spent to meet electrical energy demands. Most countries in West Africa 

use wood biomass, which is frequently dirty and causes pollution. According to Maji et al [3], 

the utilization of clean energy sources such as wind, hydropower, and solar, which have no 

negative effects on human or environmental health, is low in West Africa. Several studies, such 

as [4] – [8] asserted that combustible biomass is the dominant source of energy for residential 

consumption in most African countries. 

The Economic Community of West Africa (ECOWAS) region has a population of over 340 

million people and the world's lowest modern electricity usage rates [9]. Electricity access rates 

range from less than 20% in Liberia to more than 50% in Senegal and 70% in Ghana. In 2018, 

almost half of Africa's 600 million people lacked access to electricity, and around 80% of sub-

Saharan African businesses had regular power outages, resulting in financial losses [10]. 

According to World Economic Outlook [10], around 900 million individuals, or more than 70% 

of the population, lack access to clean cooking, which adds to forest depletion due to 

unsustainable fuelwood gathering as well as places a significant strain and loss of productive 

time on women. Africa's energy consumption is growing twice as fast as the world average, 

and the continent's abundant renewable resources and lowering technological costs are driving 

double-digit growth in utility-scale deployment. Africa is becoming a major player in global 

oil and gas markets as demand for new and efficient energy sources grows [10]. From 

insufficient power generation capacity to difficulties in managing energy infrastructure and 

investments in the sector, to challenges in serving low-income users, sub-Saharan Africa faces 

multiple dimensions to the problem of energy access, where large segments of the population 

lack reliable supply of electricity and affordable modern cooking fuels.  

The need for energy is rising as a result of rising population, urbanization, and economic 

development goals [11]. Increased population has resulted in increased energy consumption, 

which has resulted in increased greenhouse gas emissions, which is the primary driver of global 

warming, putting the survival of living species in jeopardy. Renewable energy deployment for 

clean and sustainable power production and consumption, on the other hand, was supposed to 

reduce reliance on fossil fuel carbon emissions (CO2).  

Renewable energy technology may be a viable solution to West Africa's long-standing energy 

difficulties, as renewable resources are both sustainable and suited for installation in 

communally owned mini-grids. West African countries could achieve stable power supply and 

energy efficiency by utilizing renewable resources and embracing alternative technologies. The 

power sector has been changed by the government in order to encourage private investors to 

increase renewable energy supplies. However, there are ongoing financial, technical, and 

regulatory challenges that must be addressed. As a result of the population growth rate, the 

study aimed at exploring the consumption level of renewable energy in the ECOWAS countries 

by identifying the spatial influence of access to clean fuel and cooking technology, access to 

electricity, energy intensity level, total electricity output, and total final energy consumption.  
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2. METHODOLOGY 

2.1 Data Collection 

The study areas are the ECOWAS states which are; Benin, Burkina Faso, Cote d’Ivoire, Ghana, 

Guinea, Guinea-Bissau, Liberia, Mali, Niger, Nigeria, Senegal, Sierra Leone, Togo, and 

Gambia (Fig. 1). The World Bank database was used to acquire secondary data on variables 

from the fourteen countries from 1990 to 2018. The database, compiled by the World Bank, 

collects development indicators from officially recognized international sources, and presents 

the most accurate and current global development data at national, regional and global levels. 

We used data on renewable energy consumption (REC), access to clean fuel and cooking 

technology (ACT), access to electricity (ATE), energy intensity level (EIL), total electricity 

output (TEO), Carbon(iv)oxide (CO2), and total final energy consumption (TFE). 

2.2 The Model 

We considered a spatial panel data model that captures spatial interactions across spatial units 

and overtime. The general static panel model is presented as; 

( )T Ny I W y X u =  + +                                                                                        (1) 

where N is the number of observations, T is the time period,  y is an 1NT   vector of 

observations on the dependent variable, in this case, renewable energy consumption, X is a 

NT k matrix of observations on the non-stochastic exogenous regressors, IT an identity matrix 

of dimension T, WN is the N N spatial weights matrix of known constraints whose diagonal 

elements are set to zero and   is the corresponding spatial parameters, where the disturbance 

vector is; 

( )T Nu I  =  +                                                                                           (2) 

Where T is a 1T  vector of ones, NI is an N N identity matrix,  is a vector of time invariant 

individual specific effects and   a vector of spatially autocorrelated innovations that follow a 

spatial autoregressive process of the form;  

( )T NI W v  =  +                                                                                                   (3) 

With 1  as the spatial autoregressive parameters, WN is the spatial weight matrix, 

2(0, )it vv IID   and
2(0, )it vIID  . Given that the unobserved individual effects are 

uncorrelated with the other explanatory variables in the model, the error term is written as;  

1( )T NI B v −=                                                                                          (4) 

Where ( )N N NB I W= −  

Substituting (4) in (2), we have 
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1( ) ( )T N T Nu I I B v  −=  +                                                                                              (5) 

The variance-covariance matrix for   is  

2 2 1( ) [ ( ) ]u T T N v T N NI I B B    −  =  +                             (6) 

2.2.1 Random Effects Model 

For model estimate, the study uses the maximum likelihood method, which is written as; 
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2.2.2 Fixed Effects Model 

When N is large, it is impossible to estimate the individual fixed effects consistently. Elhorst 

[12] proposed that the spatial lag and error models be evaluated individually. The fixed effect 

spatial lag model is written as follows in stacked form: 

( ) ( )T N T Ny I W y I X    =  +  + +                    (9) 

Where   is the spatial autoregressive coefficient, WN is a non-stochastic spatial weights 

matrix, T is a column vector of ones of dimension T, NI an N N identity matrix and

2(0, )i N   . Transforming the variables in (9) to eliminate the time invariant individual 

effects to maximize the likelihood function leads to  

* * * *( )T Ny I W y X  =  + +                                                                                           (10) 

Where
*

0y Q y= ,
*

0X Q X= ,
*

0Q = , 0
T

T

J
Q I

T

 
= − 
 

, and T T TJ  =  

The log likelihood function of (9) is  
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Where ( )T Ne y I W y X = −  −  and ln N NI W− is the Jacobian of the determinants. 

2.2.3 Lagrange Multipliers (LM) 

In panel data models, Lagrange multiplier tests are commonly used to test for random effects 

and serial or cross-sectional correlation. Baltagi et al [13] gave the combined marginal and 

conditional tests for all combinations of random effects and spatial correlation for model 

specification. The joint LM test for the hypothesis on no random effects and no spatial 

autocorrelation is given by; 

2
2 2

2( 1)
j

NT N T
LM G H

T b
= +

−
                                                                                    (12) 

Where ( ) / 1T NG u J I u u u =  − , ( ( ) / 2) /TH u I W W u u u  =  + , 
2( ) / 2b tr W W = +  and u  

denotes OLS residuals.  

The standardized equation of the marginal LM test of no random effects assuming no spatial 

correlation is given by;  

1 1
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−
=                                                                                      (13) 

Where LM1 is the square root of first term in (12). The standardized equation of (13) is given 

by 
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=                              (14) 

Where LM2 is the square root of second term in (12).  

2.2.4 Hausman Test 

The Hausman test compares random and fixed effects estimators and tests whether or not the 

random effects assumption is supported by the data. The Hausman test statistic is; 

 
1ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )FGLS W W FGLS FGLS WH NT    −= −  − −                            (15) 

Where ˆ
FGLS and ˆ

W are respectively the spatial GLS and within estimators and ˆ
W and ˆ

FGLS

the corresponding estimates of the coefficients’ variance-covariance matrix, H is 

asymptotically distributed 
2  with k degrees of freedom where k is the number of regressors 

in the model.  
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2.2.5 Determination of Spatial Weight 

The regional spatial-effect is embodied by the spatial-weight matrix (Wij), created by applying 

the "Rook" rule, which assumes an adjacency rule where  

1  region i and  j are adjacent

0  region i and j are not adjacent{ when

ij whenw =
 

Thus, we obtained an economic weight-matrix based on the binary weight matrix [14], with 

the following formula: 

* 1
* ,

ˆ
ij

i i

W W E E
y y

= =
−

                                                                                     (16) 

Where 
01 0

1

1

it

i it

t t

y y
t t =

=
− +

  

W is the weight-matrix of spatial location; E is the matrix of economic strength. 

 

 3. RESULTS PRESENTATION AND DISCUSSION  

The average, minimum, and maximum values of the variables of interest in the study are shown 

in table 1. In the Ecowas countries, the average value of REC and TFEC is 291913, with 352102 

having a minimum value of 3344 and 4696 having a maximum  

Value of 451991 and 5230433, respectively. Access to clean fuel and cooking technology, ATE, 

EIL, TEO, and carbon (IV) oxide have minimum values of 0.03899, 0.010, 1.413, 16.0, and 

0.04884, respectively, and maximum values of 35.0, 81.930, 57.988, 31426.0, and 0.96192.  

Table 1: Descriptive Statistics 

Var Min 1st Quart Median Mean 3rd Quarter Max 

REC 3344 34567 55348 291913 101856 4519991 

ACFT 0.0389 0.7654 1.4450 5.5430 5.3625 35.000 

ATE 0.010 9.757 20.250 25.913 40.156 81.930 

EIL 1.413 5.301 7.734 9.660 11.671 57.988 

TEO 16.0 171.2 309.5 2926.4 1970.9 31426.0 

CO2 0.0488 0.0997 0.1273 0.1578 0.1876 0.9619 

TFEC 4696 44908 76920 352102 131702 5230433 

The marginal and conditional tests for spatial error correlation test value presented in table 2 is 

0.18184, which is not significant at 5%, indicating that there is no spatial autocorrelation. The 

Hausman test also presented in table 2 is 58.926, significant at 5% shows that one of the models 

is inconsistent. This implies that the fixed effects model is most appropriate for the study. 

 

 

 



  
  
 
 

DOI 10.17605/OSF.IO/R3Q2Y 

490 | V 1 8 . I 0 7  
 

Table 2: Diagnostic Test 

Test Statistic P-value Remark 

LM1 21.912 < 2.2e-16 There is a random effect 

LM2 0.1818 0.8557 No spatial autocorrelation 

Hausman 58.926 2.472e-10 One model is inconsistent 

The result in table 3 shows the spatial autoregressive (SAR) fixed effects model estimation. 

The result shows that ACFT, ATE, TEO and CO2 are significant at 5% with a negative 

influence on REC. This indicates that a unit decrease in ACFT, ATE, TEO and CO2 will result 

to an increase in the REC (Vis-à-vis). Also, EIL and TFEC are significant at 5% with a positive 

significant  

 

Figure 1: ECOWAS States Boundaries   

(Source: http://ecowax.atspace.com ) 

 

Figure 2: Spatial Average Distribution of Renewable Energy Consumption in ECOWAS 

http://ecowax.atspace.com/
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Figure 3: Spatial Percentage Distribution of Energy Intensity Level in ECOWAS 

 

Figure 4: Spatial Percentage Distribution of Access to Clean Fuel and Technologies for 

Cooking in ECOWAS 

 

Figure 5: Spatial Percentage Distribution of Access to Electricity in ECOWAS 
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Figure 6: Spatial Percentage Distribution of Carbon (IV) Oxide in ECOWAS 

 

Figure 7: Spatial Percentage Distribution of Total Electricity Output in ECOWAS 

Influence on REC. This implies that a unit increase in the EIL and TFEC will leads to an 

increase in the REC.  

Table 3: Fixed Effects of SAR Coefficients of Estimation 

 Estimate Std.Error t – value Pr ( > 

|t| ) Coefficients 

log(ACFT) -0.0409 0.0067 -6.0946 1.097e-

09*** log(ATE) -0.0087 0.0043 -2.0410 0.04125* 

log(EIL) 0.1622 0.0217 7.4602 8.636e-

14*** log(TEO) -0.0589 0.0125 -4.7197 2.362e-

06*** log(CO2) -0.1273 0.0164 -7.7379 1.010e-

14*** log(TFEC) 0.9822 0.0117 84.0630 < 2.2e-

16*** Spatial Error Parameter 

 Rho 0.0346 0.0653 0.5296 0.5964 

Spatial Autoregressive Coefficient 

Lambda 0.0051 0.0158 0.324 0.7459 



  
  
 
 

DOI 10.17605/OSF.IO/R3Q2Y 

493 | V 1 8 . I 0 7  
 

The results in table 4 shows the spatial individual effects for the selected countries. The spatial 

effects of Ghana and Senegal are significant. This indicated that there is a spatial significant 

relationship between the REC of Ghana and Senegal. 

Table 4: Spatial Individual Fixed Effects 

 Estimate Std.Error t – value Pr ( > |t| ) 

Intercept -0.2676 0.1356 -1.9737 0.04842* 

Benin -0.2464 0.1308 -1.8835 0.0596 

Burkina Faso 0.0852 0.1385 0.6150 0.5386 

Cote d’ Ivoire 0.2261 0.1486 1.5213 0.1282 

Ghana -0.2819 0.1087 -2.5921 0.0095** 

Guinea 0.1082 0.1503 0.7202 0.4714 

Guinea 

Bissau 
-0.1310 0.1217 -1.0771 0.2814 

Liberia 0.0593 0.1440 0.4115 0.6807 

Mali -0.0750 0.1426 -0.5263 0.5987 

Niger 0.1020 0.1357 0.7517 0.4522 

Nigeria -0.0224 0.1295 -0.1732 0.8625 

Senegal 0.4684 0.1799 2.6034 0.0092** 

Sierra Leone -0.1370 0.1322 -1.0357 0.3003 

Togo -0.0781 0.1316 -0.5940 0.5525 

Gambia -0.0772 0.1307 -0.5910 0.5545 

Table 5 presents the spatial time effects error model. The result shows that ACFT, ATE, and 

CO2 have a significant negative effect on REC.  This implies a unit decrease in the ACFT, ATE 

and CO2 will lead to an increase in REC over the spatial time. However, EIL and TFEC have 

a positive influence on REC, which implies that a unit increase in the EIL and TFEC will result 

to an increase in REC. Also, the result shows that TEO does not have a significant effect on 

REC over the spatial time. Figures (2- 7) depict the spatial pattern of ACT, ATE, EIL, TEO, 

CO2, and TFE, respectively. 

Table 5: Spatial Panel Time Fixed Effects Error Model 

 Estimate Std.Error t – value Pr ( > |t| ) 

Coefficients 

log(ACFT) -0.0683 0.0050 -13.7358 < 2.2e-16*** 

log(ATE) -0.0125 0.0039 -3.2112 0.0013** 

log(EIL) 0.1960 0.0148 13.2241 < 2.2e-16*** 

log(TEO) 0.0110 0.0059 1.8533 0.0638 

log(CO2) -0.2227 0.0129 -17.3332 < 2.2e-16*** 

log(TFEC) 1.0450 0.0072 144.5047 < 2.2e-16*** 

Spatial Error Parameter 

 Rho -0.3104 0.0668 -4.6466 3.374e-06*** 
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4. CONCLUSION 

This study estimated the spatio-temporal relationship of access to clean fuel & cooking 

technology, access to electricity, energy intensity level, total electricity output, and total final 

energy consumption on the consumption level of renewable energy in the West African 

countries using spatial panel analysis by employing a sample of 14 countries covering the 

1990–2018 period. 

The results indicated that access to clean fuels & cooking technology, access to electricity, total 

electricity output, and carbon (iv) oxide have a negative influence on renewable energy 

consumption. The findings showed that the kind of cooking technology, electricity and carbon 

(iv) oxide used in West Africa reduced the consumption level of renewable energy. However, 

the energy intensity level and total final energy consumption have a positive influence on 

renewable energy consumption. Also, the result showed that, out of the fourteen countries 

considered, the renewable energy consumption of Ghana and Senegal have a spatial 

relationship. 
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