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Abstract 

This study assesses the new approach of the Box-Cox Transformation to estimate power parameters using five 

criteria: the traditional Maximum Likelihood Estimation; coefficient of determination; p-value of Shapiro-Wilk 

test statistics for the residual’s normality of the estimated linear regression of the transformed response vector; p-

value related to residual’s normality; and the Mean Square Errors of the estimated nonlinear regression of the 

original response vector. The efficiency of these criteria is studied to determine the optimal transformation 

parameter in the presence of an outlier within a response variable in simple linear regression. The computational 

algorithm has been developed and applied to medical data. The authors concluded that it is difficult to obtain a 

feasible solution for all criteria from which an optimal power parameter can be selected. Therefore, the researcher's 

experience can be considered a decisive factor in choosing according to the priorities of the comparison between 

the criteria.  
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1. INTRODUCTION 

Power Transformation (PT) models can offer solutions to problems resulting from a lack of 

conditions for statistical modeling. In data analysis, transformation is the replacement of a 

variable by a function of that variable; for example, replacing a variable x by the square root 

of x or the logarithm of x. In other words, transformation is a shifting process that changes the 

shape of distribution of the relationship. Regarding the transformation of the response variable 

in non-linear relationships, PT is a tool to obtain a linear model for the transformed data as a 

first step. Subsequently, through the back transformation of the PT model, we can re-represent 

the original data with an efficient nonlinear model estimator. The current study used different 

methods and criteria to estimate the power parameter of Box-Cox transformation (BCT) in 

simple linear regression (SLR) model with the presence of an outlier value in response variable 

dataset. According to Hadi and Chatterjee, ordinary residuals are not appropriate for diagnostic 

purposes; a transformed version of these is preferable [1].  

The Box-Cox transformation (BCT) approach focuses on satisfying the modelling conditions 

in the Multiple Linear Regression model by using parametric PT [2]. Poirier used the maximum 

likelihood method to estimate the power parameter of the transformed response model in some 

life models when the residual is distributed according to the truncated normal distribution [3]. 

Abd-Rahman and Gerig used the maximum likelihood method to estimate the parameter of PT 
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in the general linear model when the linear model had a variance that was proportional to the 

response by the amount of the PT parameter [4]. Cook and Weisberg proposed their method in 

1994. They addressed the problem of selecting a transformation 𝜑(𝑦) of a univariate response 

variable 𝑌 so that the regression function 𝐸(𝜑(𝑌)|𝑋 = 𝑥) was linear in the predictor vector 𝒙, 

which aims to find a linear and monotonic transformation of the response variable using the 

BCT model [5]. Osborne indicated that a method of exploring the outliers with a significantly 

small proportion of outliers affecting even simple analysis is by summarizing the various 

potential causes of extreme scores within a data set [6]. Vélez, Correa, and Marmolejo-Ramos 

proposed a new methodology for estimating BCT parameters, as well as an alternative method 

for determining plausible values for it. The former is accomplished by first defining a grid of 

values for and then, running a normality test on the transformed data. The optimal value of λ, 

is one with the highest p-value from the normality test. After plotting the p-values against the 

values of λ on the grid, the set of plausible values is determined using the inverse probability 

method [7]. Pek and Wong applied their research on data transformation to infer with linear 

regression to achieve the assumption of normally distributed errors in the population [8]. 

Atkinson and Corbellini introduced a method of BCT family for non-negative response linear 

models and presented a long and interesting history in both theory and practice that was linked 

to generalized linear models and log transformed data in terms of the transformation of both 

sides model. [9]. In 2021, Atkinson, Riani, and Corbellini, studied the BCT of non-negative 

response in linear regression models. The extensions include both positive or negative of the 

model transformation and Yeo-Johnson transformation for observations that can be positive or 

negative [10]. The risk of the methods proposed by Riani, Atkinson, and Corbellini comes from 

using robust analytics for transforming data and introducing an automatic procedure for 

transforming the response in regression models to approximate normality. BCT is discussed 

here, as well as its generalization to the extended Yeo-Johnson transformation, which allows 

for both positive and negative responses [11]. 

The aim of the present study is to use PT in the SLR model when the data set contains an 

outlier. Therefore, it is concerned with using several criteria to select the optimal power 

parameter and compare its efficiency. The rest of the article is recognized as follows: Section 

two includes some theoretical aspects on PT and outliers. Section three includes the 

computational algorithm of the use of BCT model in SLR with the five criteria. Sections four 

and five include the application and conclusions, respectively. 

 

2. MATHEMATICAL APPROACH OF PARAMETRIC PT AND OUTLIERS 

The basic assumption in BCT methodology is that the transformed data is distributed according 

to the normal distribution. Consequently, the original data will have an unknown probability 

density function (PDF) and its parameter space will include the scale and location parameters 

of the normal distribution as well as the transformation parameter. For the positive variable 𝑌, 

the BCT model is defined as follows [2]: 

𝜑(𝑦) = {
𝑦𝜆 − 1 𝜆⁄ 𝑖𝑓 𝜆 ≠ 0 

𝑙𝑜𝑔(𝑦) 𝑖𝑓 𝜆 = 0
                                                                (1)  



  
  
 
 

DOI: 10.5281/zenodo.8285749 

720 | V 1 8 . I 0 8  

When 𝜆 = 1, the variable is analyzed in its original scale; when 𝜆 = 0 corresponds to the 

logarithmic transformation. The back transformation of BCT is defined as the following 

nonlinear model: 

            𝑌 = {
(𝜆(𝜑(𝑦)) + 1)1/𝜆 𝑖𝑓 𝜆 ≠ 0 

𝑒𝑥𝑝(𝜑(𝑦)) 𝑖𝑓 𝜆 = 0
                                                          (2)  

If we suppose that 𝜑(y)~𝑁(𝜇, 𝜎2), then the PDF of the original random variable 𝑌 is of the 

form: 

                  𝑓𝑌(𝑦;  𝜆, 𝜇, 𝜎2) =  𝑓𝜑(𝑦)(𝜑(𝑦);  𝜆, 𝜇, 𝜎2)|𝐽|                                               (3) 

where J is the Jacobian factor. Eq. 3 can be written in the following form:  

          𝑓𝑌(𝑦;  𝜆, 𝜇, 𝜎2) = {
( 2𝜋𝜎2)

−1
2⁄  𝑒𝑥𝑝{− (𝜑(𝑦) − 𝜇)2 2𝜎2⁄ }𝑦𝜆−1 𝑖𝑓 𝜆 ≠ 0 

( 2𝜋𝜎2)
−1

2⁄  𝑒𝑥𝑝{− (𝜑(𝑦) − 𝜇)2 2𝜎2⁄ }𝑦−1 𝑖𝑓 𝜆 = 0
                (4) 

Now, for the SLR model: 

𝑌 = 𝛽0 + 𝛽1 𝑋 + 𝜀,                                                                                             (5) 

where 𝑌 is the response variable, 𝑋 is the explanatory variable, 𝛽0 and 𝛽1 represent the 

parameters to be estimated and the error term 𝜀. For the nonlinear data, the linear regression 

analysis according to Eq. 5 will be inappropriate for obtaining an efficient model. Therefore, 

the data can be transformed using PT to estimate a linear model for the transformed data and 

benefit from the power parameter to estimate a non-linear regression model for the original 

data. 

If we suppose that 𝜑(𝑦) =  𝛽0 + 𝛽1 𝑋 + 𝜀 represents the linear model of the transformed data 

so that 𝜑(𝑦)~𝑁(𝜇𝑥, 𝜎𝜀
2), where, 𝜇𝑥 = 𝛽0 + 𝛽1 𝑋, and var(𝜑(𝑦)) = 𝜎𝜀

2, the Likelihood to 

estimate the power parameter is as follows [2]: 

L(𝑦; 𝜆, 𝛽0, 𝛽1, 𝜎𝜀
2) = ∏ 𝑓𝑌(𝜑(𝑦);  𝜆, 𝛽0 + 𝛽1 𝑋, 𝜎𝜀

2)|𝑑𝜑(𝑦) 𝑑𝑦⁄ | 𝑁
𝑖=1  

= ( 2𝜋𝜎𝜀
2)−N 2⁄   𝑒𝑥𝑝{− ∑ (𝜑(𝑦𝑖) − (𝛽0 + 𝛽1 𝑋𝑖))2 2𝜎𝜀

2⁄𝑁
𝑖=1 } ∑ |𝑑𝜑(𝑦𝑖) 𝑑𝑦𝑖⁄ |𝑁

𝑖=1      (6) 

Then, the log likelihood is in the following form: 

log L(𝑦; 𝜆, 𝛽0, 𝛽1, 𝜎𝜀
2) = −N 2⁄ log 2 𝜋 − N 2⁄ log 𝜎𝜀

2 − ∑ 𝜀2 2𝜎𝜀
2⁄ + ∑ log  |𝑑𝜑(𝑦𝑖) 𝑑𝑦𝑖⁄ |

𝑁

𝑖=1
   (7) 

where: 

                              𝜎𝜀
2 = ∑ 𝜀2

𝑖 𝑁⁄                                                                (8)                                                

Thus, the optimal 𝜆 is the value that maximize the variable parameter of equation (7), such that 

   log 𝐿(𝑦; 𝜆, 𝛽0, 𝛽1, 𝜎𝜀
2) = 𝐴 −  N 2⁄ log 𝜎𝜀

2 + ∑ log  |𝑑𝜑(𝑦𝑖) 𝑑𝑦𝑖⁄ |𝑁
𝑖=1 ,                    (9) 

where 𝐴 is the constant term of equation (9) and equal to −N 2⁄ log2𝜋 − N 2⁄ . 

In regression analysis, an outlier is an observation for which the residual is large in magnitude 
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compared with other observations in the data set. Hinkley indicated that PT in the presence of 

outliers is a risky business [12]. With the medical data set, the effect of outliers on the least 

squares capabilities explains how a single observation may alternate the direction of least 

square [13]. This illustrates that the presence of an outliers of the regression for these 

observations would have large scalar residual compared with the other observations. 

Qin and Yang proposed a new outlier detection method based on the wavelet transform and 

local outlier factor algorithm; the experimental results on transformed data from several power 

transformers showed that the algorithm can detect outliers that exceed the threshold value [14]. 

In addition, Raymaekers noted that MLE is highly sensitive in estimating parameters when the 

outliers are presented [15].  

  

3. COMPUTATIONAL ALGORITHM  

In this study, the authors used different methods and criteria to estimate the parameter. In 

addition to the traditional MLE method [15], other test criteria are the Coefficient of 

Determination (COD) and p-value of Shapiro-Wilk (SW) test statistics of the residual’s 

normality for the following estimated linear regression of the transformed response vector. 

�̂�(𝐲) = �̂�𝟎 + �̂�𝟏𝒙                                       (10) 

From the estimated nonlinear regression of the original response resulting from the inverse of 

BCT according to Eq 2, the tested criteria are the Mean Square Errors (MSE) and p-value of 

SW test statistics of the residual’s normality.  

The steps of the computational algorithm are as follows:  

Step 1: Suppose that 𝝀 ∈ 𝚲, where 𝚲 = {−𝟐, −𝟏. 𝟗, . . . , 𝟏. 𝟗, 𝟐}. This range can be enlarged to 

𝚲 = {−𝟓, −𝟒. 𝟗, . . . , 𝟐. 𝟗, 𝟑} when we do not get a maximum value for MLE (Eq. 7) and COD 

of the SLR of the transformed data; in other words, when the curves of these indicators are not 

convex.  

Step 2: Estimate SLR model of the transformed response, �̂�(𝐲) = �̂�𝟎 + �̂�𝟏𝒙 and estimate 

using the first criteria; COD.  

Step 3: Test the normality of the random residual and model for transformed data then calculate 

the value of p-value.  

Step 4: Estimate using the MLE according to Eq. 7.  

Step 5: Estimate the nonlinear regression model of the original response Y by the back 

transformation of BCT according to Eq. 2.  

�̂� = {
(𝝀(�̂�𝟎 + �̂�𝟏𝒙 ) + 𝟏)

𝟏/𝝀
    𝒊𝒇 𝝀 ≠ 𝟎 

𝒆𝒙𝒑(�̂�𝟎 + �̂�𝟏𝒙)    𝒊𝒇 𝝀 = 𝟎
                                                (𝟏𝟏)  

Step 6: Estimate Mean Square Error for estimated nonlinear regression model according to Eq. 

11,  
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𝑴𝑺𝑬(�̂�/𝝀) = ∑(𝒚𝒊 − �̂�𝒊)𝟐 𝑵 − 𝟐⁄                                        (𝟏𝟐) 

Step 7: Test the normality of random residual of the estimated nonlinear regression model (Eq. 

11) using the SW test.  

Step 8: Repeat steps 1 to 7 for all 𝝀 ∈ 𝚲. 

 

4. APPLICATION  

BCT was applied to medical dataset and the R software was used to analyze the data. The 

medical dataset was collected randomly for male and female at the Azadi heart center at the 

Duhok hospital in the Duhok Governorate in Kurdistan Region of Iraq and contained 30 

observations that included a dependent variable 𝑌 representing the Systolic Blood Pressure 

(SBP) and an independent variable (𝑋) as Age (Table 1).  

Table 1: Medical dataset of 30 observations between Age (𝑿) and the SBP (𝒀) 

𝑋 39 47 45 47 65 46 67 42 67 56 

𝑌 144 220 138 145 162 142 170 124 158 154 

𝑋 64 56 59 34 42 48 45 17 20 19 

𝑌 162 150 140 110 128 130 135 114 116 124 

𝑋 36 50 39 21 44 53 63 29 25 69 

𝑌 136 142 120 120 160 158 144 130 125 175 

In Figure 1, it can be seen that the second observation of the response variable of SBP is an 

outlier. Various criteria, such as the Studentized, Mahalanobis Distance, Box Plot, Cooks 

Distance, and Welsch Distance are used to identify outliers [1] (see figure 1). 

 

Figure 1: Scatter plot and box-plot of data set 

In Table 2, to note the estimation of the power parameter according to the five criteria by 

applying the proposed algorithm, we can choose that for the power parameter in the 

range(−𝟓, −𝟎. 𝟏), the slope for all intervals is 0.00. Therefore, the estimated model for y 

according to Eq. 10 will be a straight line parallel to the 𝑥-axis. In addition, the logarithm 

transformation also shows that the slope is 0.00, estimated. However, when the power 
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parameter was 𝛌 𝝐 (𝟎. 𝟏, 𝟎. 𝟗), we can see that the slope is between (0.00 and 0.06), which is 

approximately 0, although the p-value of the SW test statistics for the residual’s normality of 

the estimated linear regression for the transformed response vector is 0.00; this means that the 

residual is not normally distributed. For the values of power parameter in the range(𝟏, 𝟑), it 

can be shown that the slope appeared between (0.97 and 2E+04), although the p-value of SW 

test statistics for the error’s normality of both estimated linear regression and non-regression 

are approximately 0.00. Regarding the COD criteria, it is known that the curve (𝛌, 𝐑𝟐) becomes 

convex. And we restored to expanding the range from (-2,2) to (-5,3) until obtaining the highest 

value for COD, when the values of the power parameter are in the range (−𝟓, −𝟐. 𝟓), the COD 

is increased from 0.60 to 0.61 but the slope is 0.00 (Figure 2.b). Based on the MLE method, 

we obtained the convex curve (Figure 2.a) of function by using Eq. 7; the optimum value of 

this curve corresponds to the maximum value of the power parameter. Regarding the MSE 

criterion, it shows that the concave curve (Figure 2.c) and optimum value of this curve 

corresponding to the minimum value of the power parameter is 1. 

Table 2: Results of applying the computational algorithm with the presence of the 

outlier 

𝛌 𝐌𝐋𝐄(�̂�|𝛌) 
SLR of Transformed Response �̂�(𝒚)|𝑿 

Nonlinear Regression 

�̂�|𝑿 

𝐑𝟐 𝐏 𝐯𝐚𝐥𝐮𝐞 (𝛆) Intercept Slope 𝐏 𝐯𝐚𝐥𝐮𝐞 (𝛆) 𝐌𝐒𝐄(�̂�|𝛌) 

(-5.0, -

4.4) 

(17.5, 

19.1) 

(0.60, 

0.61) 
(0.07, 0.12) 

(0.20, 

0.23) 
0.00 (0.10, 0.12) (337, 351) 

(-4.3, -

2.5) 

(19.3, 

21.4) 
0.61 (0.09. 0.18) 

(0.23, 

0.40) 
0.00 (0.12, 0.82) (315, 336) 

(-2.4, -

1.7) 

(21.0, 

21.4) 

(0.59, 

0.60) 
(0.01, 0.07) 

(0.44, 

0.59) 
0.00 (0.89, 0. 97) (314, 314) 

(-1.6, -

0.1) 

(17.4, 

21.0) 

(0.51, 

0.58) 
(0.00, 0.01) 

(0.63, 

3.71) 
0.00 (0.38, 0.97) (301, 309) 

𝐿𝑛 𝑌 17.1 0.51 0.00 4.64 0.00 0.30 301 

(0.1, 0.9) 
(15.0, 

17.1) 

(0.44, 

0.50) 
0.00 

(5.9, 

68.52) 

(0.00, 

0.06) 
(0.02, 0.24) (300, 301) 

1.0 14.8 0.43 0.00 97.72 0.97 0.01 300 

(1.1, 3.0) (1.1, 14.2) 
(0.26, 

0.42) 
0.00 

(140.26, 

8E+05) 

(1.6, 

2E+04) 
(0.00, 0.01) (300, 308) 

                              Table 3: Results according to the optimal λ 

Criteria Optimal λ Intercept Slope Estimated Nonlinear Model �̂�|𝑿 

Max (𝑅2(𝜑(𝑦)|X) (−4.3, −2.5) (0.23, 0.40) 0.00 �̂� =  constant 

Max (P value (𝜀|ŷ) −1.6 0.63 0.00 �̂� =  constant 

Min (𝑀𝑆𝐸(ŷ|λ)) 1.0 97.72 0.97 �̂� = 98.72 + 0.97 𝑥 

Max (P value (𝜀|�̂�(y)) −3.6 0.278 0.00 �̂� =  constant 

Max (MLE) −2.4 0.417 0.00 �̂� =  constant 

Table 3 shows that the optimal λ according to the five criterions with the presence of the outlier. 
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Figure 2: Plots; (a) log-likelihood, (b) COD, (c) MSE plot of the estimated SLR of 

transformed   response variable Z according to BCT, and (d) p-value of SLR of 

Transformed Response 

Table 4 shows the estimations of the optimal power parameter according to the five criteria 

after deleting the outlier value which is necessary to delete it. The COD for the dataset after 

removing the outlier is 0.71 when the power parameterλ = 1, which increases if we compare 

it with the original dataset and p-value of the SW test statistics for the residual’s normality. 

Both estimated linear regression and non-linear regression are 0.37, indicating that the residual 

is normally distributed. Conversely, the transformation 𝐿𝑛(𝑦) shows that the p-value of SW 

test statistics for the residual’s normality for both estimated linear regression and non-linear 

regression are increased by 0.43 and 0.47, respectively. That means that the random residuals 

are closer to the normal distribution. Another criterion is improved when the power parameter 

becomes 𝐿𝑛(𝑦), which is MSE. A feasible solution is for the optimal value of the power 

parameter to be deduced in the Ln(y). If Lmax is the MLE value of PDF of the original random 

variable 𝑌 after deleting the outlier according to Eq. 7, representing the basis for estimating the 

optimum power parameter, then the optimal value is Ln(y), which is shown in Table 5. Thus, 

we can conclude that the convex curve of the MLE function, p-value of the SW test statistics 

for the residual’s normality by using Eq. 7, and maximum value of this curve correspond to the 

optimal value of the power parameter (Figure 3). Finally, we found that selecting the optimal 

value for the PT was possible based on three criteria: the p-value of SW test statistics for the 

residual’s normality of the estimated linear regression of the transformed response vector, MSE 
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of the estimated nonlinear regression of the original response vector resulting from the inverse 

of BCT, and MLE. Thus, we obtained the following nonlinear model as suitable for the data: 

�̂� = exp {4.62 + 0.01𝑥}                                                            (13 ) 

Resulting from the following equation 

𝑙𝑛(�̂�) =  4.62 + 0.01𝑥                                                            (14) 

See Figure 4 the plot of observed and fitted value when λ = ln(y). 

Table 4: Results of applying the computational algorithm after deleting the outlier 

 

Table 5: Results according to the optimal λ after deleting the outlier 

Criteria Optimal λ Intercept Slope 
Estimated Nonlinear 

Model �̂�|𝑿 

Max (𝑅2(𝜑(𝑦)|X) (-1.2, 0.9) (0.83, 67.5) (0.00, 0.57)  

Max (P value (𝜀|ŷ) Ln (y) 4.62 0.01 �̂� = exp{4.62 + 0.01𝑥𝑖} 

Min (𝑀𝑆𝐸(ŷ|λ)) Ln (y) 4.62 0.01 �̂� = exp{4.62 + 0.01𝑥𝑖} 

Max (P value (𝜀|�̂�(y)) (-3, 0.1) (0.33, 4.62) (0.00, 0.01)  

Max (MLE) Ln (y) 4.62 0.01 �̂� = exp{4.62 + 0.01𝑥𝑖} 

 

 
  

𝛌 𝐌𝐋𝐄(�̂�|𝛌) 
SLR of Transformed Response �̂�(𝒚)|𝑿 Nonlinear Regression �̂�|𝑿 

𝐑𝟐 𝐏 𝐯𝐚𝐥𝐮𝐞 (𝛆) Intercept Slope 𝐏 𝐯𝐚𝐥𝐮𝐞 (𝛆) 𝐌𝐒𝐄(�̂�|𝛌) 

(-3.0, -2.1) (26.8,28.4) (0.68, 0.70) (0.12, 0.28) (0.33, 0.47) 0.00 (0.51, 0.58) (83.5,82.9) 

(-2.0, -1.3) (28.6, 29.5) (0.70, 0.71) (0.30, 0.39) (0.50, 0.76) 0.00 (0.59, 0.61) (82.8, 83.2) 

(-1.2, -0.1) (29.6, 30.1) (0.71, 0.72) (0.40, 0.43) (0.83, 3.70) 0.00 (0.47, 0.62) (83.2, 84.9) 

Ln y 30.2 0.72 0.43 4.62 0.01 0.46 85.1 

(0.1, 0.9) (29.8, 30.1) (0.71, 0.72) (0.39, 0.42) (5.9, 67.5) (0.01, 0.57) (0.39, 0.46) (85.4, 87.8) 

1.0 29.79 0.71 0.37 96.07 0.94 0.37 88.1 

(1.1,2.0) (28.7, 29.7) (0.70, 0.71) (0.31, 0.37) (137.1, 3901) (1.5, 133.7) (0.32, 0.36) (88.5, 93.1) 

(2.1, 3) (26.9, 28.6) (0.68, 0.70) (0.20, 0.30) (5641, 96093) (219.5, 9028) (0.32, 0.36) (93.7, 101.1) 
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Figure 3: Scatter plot for data set (a) and plots; log-likelihood (b), p-value of SLR of 

transformed response (c) and COD (d) 

 

Figure 4: Plot of observed and fitted value 

We generated five different criteria for choosing the best value of the transformation parameter 

by using BCT methods. The authors believe that it is not feasible to acquire an optimal value 

that meets the conditions of the five criteria: the maximum value of the MLE function, COD, 

p-value of the SW test of residual vector normality, p-value of SW test for the residual’s 

normality, and MSE of the estimated nonlinear regression model of the original response 

vector. In several cases, we must evaluate the findings based on the importance and priority of 

some criteria, as well as what additional criteria might contribute to support the priorities.  
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5. CONCLUSIONS 

This study explored the identification of outliers in a SLR model. Notably, the optimal power 

parameters for transformation models by using BCT is significantly effective. There are a 

variety of methods for choosing the best power parameter, which are classified such that the 

first is the use of well-known estimation methods, such as the MLE method. The second 

method is to use some efficiency criteria from regression modelling that has been shown in this 

study, such as the COD and p-value, as decision rules when estimating the power parameter. 

Furthermore, one can use the p-value of the SW test for the residual’s normality and MSE of 

the estimated nonlinear regression model of the original response vector. We can conclude that 

there is insufficient evidence to select the best value of the power parameter for the original 

dataset into five criteria. However, after deletion of the outlier, the result was better than the 

outlier because the value of MLE, COD, and p-value were increased and the value of MSE 

decreased, as shown in Tables 4 and 5. We can conclude that a feasible solution of the optimal 

value of the power parameter can be deduced in the Ln(y) after deleting the outlier; this 

represents the basis for estimating the optimum power parameter, thus the optimal value is 

Ln(y), which is shown in Table 5. Finally, the authors believe that Ln(y) after deleting the outlier 

of displacement in the original data, which is generated by BCT to choose the optimal power 

parameter, as an alternative to the parametric method for the hypothesis of normality of 

transformed response. It is known that it is difficult to find a single solution area for two or 

more criteria for selecting an optimal value for the PT. However, the multiplicity of criteria 

provides authors with a wider area for selection and differentiation. This varies according to 

the type of data and becomes more difficult if there are outlier values within the data. 

Data Availability Statement: The medical dataset was collected randomly for male and female 

at the Azadi heart center at the Duhok hospital in the Duhok Governorate in Kurdistan Region 

of Iraq and contained 30 observations that included a dependent variable 𝑌 representing the 

Systolic Blood Pressure (SBP) and an independent variable (𝑋) as Age (Table 1).  
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