

PROMOTING EMPLOYEE GREEN BEHAVIOR THROUGH GREEN KNOWLEDGE MANAGEMENT, GREEN INNOVATION & GREEN COMMITMENT FOR CORPORATE SUSTAINABILITY

LENNY CHRISTINA NAWANGSARI

Faculty Economic and Business, Universitas Mercu Buana, Indonesia. Corresponding Author Email: lenny.christina@mercubuana.ac.id

DUDI PERMANA

Faculty Economic and Business, Universitas Mercu Buana, Indonesia.

HASLIZA ABDUL HALIM

Faculty Management, University Sains Malaysia, Malaysia

Abstract

Currently the Company has an obligation in operational governance for the continuity of its business by implementing green management. With this paradigm shift, companies must play a proactive role in preserving the environment in a sustainable manner. For this reason, there is a need for synergy between human efforts to manage survival (profit) optimally, while maintaining environmental sustainability (planet) and human welfare as a whole. This study aims to analyze the influence of Green Knowledge Management, Green Innovation, Green Commitment, Green Perceived Organizational Support on Employee Green Behavior and their implications for Corporate Sustainability in company in Indonesia. This research done with Quantitative Method using Structural Equation Modelling (SEM) analysis with software Partial Least Square (PLS). The population in this study was a sample of 220 people and the sampling technique is random sampling. The results of the research prove that: 1) Green Knowledge Management has no effect on Employee Green Behavior; 2) Green Innovation has effect on Employee Green Behavior; 4) Green Perceived Organizational Support has moderate the influence of Employee Green Behavior to Corporate Sustainability & 5) Employee Green Behavior has effect Corporate Sustainability.

Keywords: Green Knowledge Management, Green Innovation, Green Commitment, Green Perceived Organizational Support, Employee Green Behavior, Corporate Sustainability

1. INTRODUCTION

Based on previous research, several factors can affect sustainable employee performance include Cognitive liveliness, Green transformational leadership, Motivation, Green Human Resource Management, Employee Green Behavior (EGB), Organizational Citizenship Behavior for Environment (OCBE), and Supervisory Behavior. The table below describes the Pre-survey of the implementation of Employee Sustainable Performance in university conducted on 30 employees:

No	Question	Yes	No
1	Has the company consistently achieved and maintained the company's achievements in the environmental field?	12 (40%)	18 (60%)
2	Are the social obligations and responsibilities in the environment around the company going well?	16 (53%)	14 (47%)
3	Is the Company oriented towards generating profits for all stakeholders?	15 (50%)	15 (50%)

Table 1: Pre-survey results of Organizational Sustainability

Based on the Pre-research results, it is proven that Employee Sustainable Performance has not been optimally implemented. Researchers also conducted a pre-survey regarding the implementation of EGB, the results of which are as follows:

Table 2: Pre-survey results of Employee Green Behaviour

No	Question	Yes	No
1	I suggest other employees to behave that is beneficial to the environment	12 (40%)	18 (60%)
2	I prioritize to behave that is beneficial to the environment	16 (53%)	14 (47%)

Based on the Pre-research results, it is proven that Employee Green Behaviour has not been optimally implemented. Based on the interview results, there are several variables that are suspected of influencing Employee Green Behavior, namely Green Human Resources Management, Green Organization Culture and Green Knowledge Management. Researcher conducted a pre-survey of several variables related to the Employee Green Behaviour variable.

Table 3: Pre-survey results of variables that affect Employee Green Behaviour

Variable	Yes	No
Green Knowledge Management		
the company has made efforts to manage employee knowledge	15 (50%)	15 (50%)
Green Innovation		
Does the company choose environmentally friendly materials in product development/innovation?	12 (40%)	18 (60%)
Green Commitment		
Proud of an environmentally friendly organization to others outside the organization.	15 (50%)	15 (50%)
Green Perceived Organizational Support		
The organization values employee contributions regarding green management	12 (40%)	60%)

From the pre-survey conducted on 30 people, it was found that 4 variables were still not optimally implemented. Several studies related to the factors that influence of on Employee Green Behavior are still inconsistent. Based on the above phenomenon, the researcher is interested in researching and analyzing the influence of Green Knowledge Management, Green Innovation, Green Commitment, and Green Perceived Organizational Support on Employee Green Behavior and their implications for Corporate Sustainability companies in Indonesia.

2. THEORETICAL REVIEW

Green Knowledge Management

According to Gauthier and Zhang (2020) Green Knowledge Management is the process of managing knowledge resources through a process of generalizing ideas from each individual, then developing all initiatives that arise from stakeholders, followed by reintegrating the sustainability strategy with existing strategies. Where the process is very relevant to support environmental sustainability. Furthermore, according to Yu, Abbas, Alvarez-Otero, and Cherian (2022) Green Knowledge Management is a systematic process for acquiring, sharing, and using knowledge effectively which aims to integrate environmental aspects into all dimensions of knowledge management. The dimensions of Green Knowledge Management according to Yu et al (2022) are: Green Knowledge Acquisition, Green Knowledge Application, Green Knowledge Sharing, and Green Knowledge Storage & Green Knowledge Creation

Green Innovation

According to Grazzi et al. (2019) Green Innovation consists of new or better products (goods or services) and processes (including organizational, production and marketing changes) that differ significantly from those previously offered or used leading to environmental improvements. Environmental improvement can be the main goal of the innovation or the result of other innovation goals. Environmental improvements of an innovation may occur during the production or supply of goods or services, or during the after-sales use of goods or services by end users. Liao (2016) argues that Green Innovation can be categorized into Green Product Innovation Products and Green Process Innovation

Green Commitment

Green commitment, as defined by Raineri and Paillé (2016), is a mental state that expresses mutually a brains of connection and obligations to an environmental problem in the place of work. Dimensions of Green Commitment: Affective Commitment, Continuance Commitment & Normative Commitment.

Green Commitment

Green commitment, as defined by Raineri and Paillé (2016), is a mental state that expresses mutually a brains of connection and obligations to an environmental problem in the place of work. Dimensions of Green Commitment: Affective Commitmen, Continuance Commitment & Normative Commitment

Green Perceived Organizational Support

Perceived Organizational Support (POS) fundamentally implies acknowledgment by the organization of a person's loyalty, efforts, socio-emotional needs, and commitment (Paille & Meija-Morelos, 2019) characterized POS towards environment as "the particular convictions held by employees concerning how much the organization values their commitments toward sustainability". With regards to corporate greening, employees feel bolstered when the organization supported employees' needed resources (Paille & Meija Morelos, 2019).

Therefore, Pinzone (2019) proposed that adjusting the original organizational support theory to environmental concerns results in green POS, since green training is likely to be perceived as an investment made by organization in employees' knowledge and skills for environment enhancement. Dimensions of Green Perceived Organizational Support are Fairness, Supervision Support, and Organizational Reward & Work Condition

Employee Green Behavior

Employee Green Behavior according to Ruiz-Perez, Lleo & Ormazabal (2021) states that: "the Environmental Sustainable Behaviors of employees can be summarized in three points: efficiency of different resources, environmental consideration of transport and suggestions for reducing the environmental impact of processes, products and services". It can be said that Employee Green Behavior is a Sustainable Behavior that can be seen from three behaviors, namely, efficiency of various resources, care for the impact of transportation on the environment. Meanwhile, according to Farooq et.al (2021) Employee Green Behavior is employee behavior in their daily lives where employees complete tasks demanded by the organization with an orientation to sustainability aspects. In addition, according to Xing and Starik (2017) Employee Green Behavior is employee behavior is employee the norm in a company. Dimensions of Employee Green Behavior are Proecological Behavior, Frugal Behavior, Altruistic Behavior& Equitable Action Behavior

Hypothesis Development

The relationship between Green Knowledge Management and Employee Green Behavior

Research by Bajie Zhang et.al (2021) proves that Environmental Knowledge Application and Environmental Knowledge Sharing have a positive effect on Employee Green Behavior. Meanwhile, research conducted by Olawole Fawehinmi et.al, 2019 states that environmental knowledge affects Employee Green Behavior. Furthermore, research by Shumaila Naz et.al (2022) stated that environmental knowledge of pro-environmental behaviors had an effect on Employee Green Behavior. Meanwhile, Dakhan et.al (2021) research proves that Environmental Knowledge affects Employee Green Behavior. Based on the description above, the researcher proposes the following hypothesis:

H1: Green Knowledge Management has a positive and significant effect on Employee Green Behavior

The relationship between Green Innovation and Employee Green Behavior

Research conducted by Aboramadan (2020) proves the results show that green innovative impact to Employee Green Behavior. Meanwhile, research by Li et.al (2022) stated that green innovative impact to Employee Green Behavior. Based on the description above, the researcher proposes the following hypothesis:

H2: Green Innovation has a positive and significant effect on Employee Green Behavior

The relationship between Green Commitment and Employee Green Behavior

Research conducted by Richard (2021) stated that the commitment shown by supervisors in terms of dedication to environmental sustainability and willingness to engage in proenvironmental behavior encourages employees to engage in green work behavior. Meanwhile, Samad Rahimiaghdam's research (2022) states that affective commitment affects the green environment of employees. Based on the description above, the researcher proposes the following hypothesis:

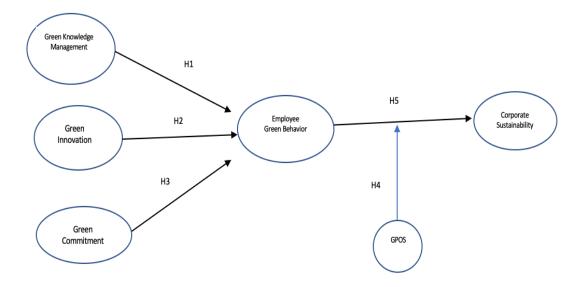
H3: Green Commitment has a positive and significant effect on Employee Green Behavior

The relationship between Green Perceived Organizational Support, Employee Green Behavior & Corporate Sustainability

The results of research conducted by Bajie Zhang et al (2021) show that Green Perceived Organizational Support positively moderates the relationship between Employee Green Behavior and Corporate sustainability. This is in line with the research of Neruja Sivalingam et.al (2022), proving that Organizational Environmental Support has an effect on Employee Green Behavior and Organizational Sustainability. Meanwhile, Mohammed Aboramadana's research (2022) states that Perceived green organizational support affects Employee Green Behavior and Organizational Sustainability. Hafizatul Alina's research (2021) also proves that Perceived Organizational Support has an effect on Green Behavior. Based on the description above, the researcher proposes the following hypothesis:

H4: Green Perceived Organizational Support has moderate the influence of Employee Green Behavior to Corporate Sustainability.

The relationship between Employee Green Behavior and Corporate Sustainability


Research conducted by Abdullah Kaid.et.al (2021) proves that Employee Green Behavior affects Environmental corporate sustainability Performance. Based on the description above, the researcher proposes the following hypothesis:

H5: Employee Green Behavior has a positive and significant Corporate Sustainability

DOI: 10.5281/zenodo.8296991

Figure 1: Framework

3. RESULTS AND DISCUSSION

Evaluation of the Measurement Model (Outer Model)

The evaluation of the measurement model (outer model) is carried out to determine the validity and reliability of the link between the indicator and its latent variables. To assess the measurement model, factor loading, composite reliability, Cronbach's alpha, average extract variance (AVE), and Discriminant Validity

1) Convergent Validity Test

	Moderating Effect 1	Green Knowledge Management (X1)	Green Innovation (X2)	Green Commitment (X3)	EGB (Y1)	Corporate Sustainability (Y2)	GPO S (Z)
GPOS (Z)							
* EGB	1,195						
(Y1)							
X1.1		0,765					
X1.10		0,854					
X1.2		0,801					
X1.3		0,850					
X1.4		0,884					
X1.5		0,812					
X1.6		0,717					
X1.7		0,767					
X1.8		0,704					
X1.9		0,903					
X2.1			0,927				

Table 4: Convergent Validity Test Results

DOI: 10.5281/zenodo.8296991

X2.2 0,875 0 X2.3 0,943 0 X2.4 0,946 0 X2.5 0,866 0 X2.6 0,720 0 X3.1 0,850 0 X3.2 0,850 0 X3.3 0,912 0 X3.4 0,926 0 X3.5 0,816 0 X3.6 0,811 0 Y1.1 0,755 0 Y1.2 0,760 0 Y1.3 0,718 0 Y1.4 0,913 0 Y1.5 0,775 0 Y1.6 0,718 0 Y2.1 0,882 0,706 Y2.2 0 0,882 Y2.4 0,036 0,783 Y2.6 0,783 0,883 Z3 0 0,783 Z4 0 0,936 Y2.6 0 0,883 Z3 0 0,883 Z4 0 0,936 Z5		Moderating Effect 1	Green Knowledge Management (X1)	Green Innovation (X2)	Green Commitment (X3)	EGB (Y1)	Corporate Sustainability (Y2)	GPO S (Z)
X2.4 0,946 X2.5 0,866 X3.1 0,720 X3.2 0,850 X3.3 0,912 X3.4 0,926 X3.5 0,816 X3.6 0,811 Y1.1 0,760 Y1.2 0,760 Y1.3 0,718 Y1.4 0,913 Y1.5 0,775 Y1.6 0,718 Y1.7 0,927 Y1.8 0,927 Y2.1 0,882 Y2.1 0,936 Y2.3 0,936 Y2.4 0,936 Y2.5 0,782 Y2.4 <td< td=""><td>X2.2</td><td></td><td></td><td>0,875</td><td></td><td></td><td></td><td></td></td<>	X2.2			0,875				
X2.5 0,866 0,720 0 X3.1 0,720 0,872 0 X3.1 0,850 0 0 X3.2 0,850 0 0 X3.3 0,912 0 0 X3.4 0,926 0 0 X3.5 0,816 0 0 X3.6 0,811 0 0 Y1.1 0,755 0 0 Y1.2 0 0,760 0 Y1.3 0,747 0 0,775 Y1.4 0,913 0 0,775 Y1.6 0,718 0 0,718 Y1.7 0 0,882 0 Y1.8 0,082 0 0 Y2.1 0 0,882 0 Y2.1 0 0,734 0 0,935 Y2.2 0 0,0782 0,782 0,782 Y2.4 0 0,0783 0,881 0,883 Y2.6 0 0,0783 0,883 0,883 Y2.6	X2.3			0,943				
X2.6 0,720 0,872 0 X3.1 0,850 0 0 X3.2 0,850 0 0 X3.3 0,912 0 0 X3.4 0,926 0 0 X3.5 0,816 0 0 X3.6 0,811 0 0 Y1.1 0,760 0 0 Y1.2 0 0,760 0 Y1.3 0,775 0 0 Y1.4 0,913 0 0,718 Y1.5 0,0718 0,706 0 Y1.7 0,027 0 0,734 Y2.1 0,0706 0,734 0,882 Y2.1 0 0,0706 0,734 Y2.2 0 0,0782 0,734 Y2.3 0 0,882 0,887 Y2.4 0 0,0782 0,782 Y2.6 0,0783 0,783 0,851 Z1 0 0,0783 0,883 Z3 0 0,0838 0,883	X2.4			0,946				
X3.1 0,872 0,850 X3.2 0,912 0 X3.3 0,912 0 X3.4 0,926 0 X3.5 0,816 0 X3.6 0,816 0 Y1.1 0,755 0 Y1.2 0,760 0 Y1.3 0,747 0 Y1.4 0,913 0 Y1.5 0 0,775 Y1.6 0,718 0 Y2.1 0,082 0 Y2.1 0,036 0,734 Y2.2 0 0,782 Y2.4 0,036 0,782 Y2.5 0 0,783 Y2.6 0,783 0,883 Y2.6 0 0,783 Y2.6 0 0,783 Y2.6 0 0,783 Y2.6 0 0,783 Y2.6 0 0,0833 Y2.6 0 0,0835 Y2.6 0 0,0835 Y2.6 0 0,0835	X2.5							
X3.2 0,850 0 X3.3 0,912 0 X3.4 0,926 0 X3.5 0,816 0 X3.6 0,811 0 Y1.1 0,755 0 Y1.2 0,760 0 Y1.3 0,747 0 Y1.4 0,913 0 Y1.5 0 0,775 Y1.6 0,718 0 Y1.7 0 0,882 Y2.1 0 0,734 Y2.2 0 0,783 Y2.3 0 0,782 Y2.4 0,936 0,782 Y2.5 0 0,783 Y2.6 0,783 0,851 Y2.6 0 0,862 Y2.5 0 0,783 Y2.6 0 0,783 Y2.6 0 0,851 Y2.6 0 0,936 Y2.5 0 0,936 Y2.6 0 0,936 Y2.6 0 0,936 Y2.6<	X2.6			0,720				
X3.3 0,912 0,912 X3.4 0,926 0 X3.5 0,816 0 X3.6 0,811 0 Y1.1 0,755 0 Y1.2 0,760 0 Y1.3 0,747 0 Y1.4 0,913 0 Y1.5 0,775 0 Y1.6 0,718 0 Y1.7 0,927 0 Y1.8 0,882 0 Y2.1 0,936 0,734 Y2.2 0 0,782 Y2.4 0 0,783 Y2.5 0 0,782 Y2.6 0,783 0,883 Z1 0 0,883 Z3 0 0,883 Z4 0 0,936 Y2.5 0 0,783 Z1 0 0,883 Z3 0 0,893 Z4 0 0,0893 Z4 0 0,0893 Z4 0 0,0893 Z4	X3.1				0,872			
X3.4 0,926 0 X3.5 0,816 0 X3.6 0,811 0 Y1.1 0,755 0 Y1.2 0,760 0 Y1.3 0,747 0 Y1.4 0,913 0 Y1.5 0,718 0 Y1.6 0,718 0 Y1.7 0,927 0 Y1.8 0,882 0 Y2.1 0,734 0,882 Y2.1 0,734 0,936 Y2.2 0 0,782 Y2.4 0,0782 0,783 Y2.5 0 0,783 Y2.6 0,783 0,883 Y2.6 0 0,883 Y2.6 0 0,883 Y2.6 0 0,883 Y2.6 0 0,893 Y2.6 0 0,893 Y2.6 0 0,893 Y2.6 0 0,893 Y2.6 0 0,986 Y2.6 0 0,9856	X3.2				0,850			
X3.5 0 0,816 0 X3.6 0,811 0,755 0 Y1.1 0,755 0 0 Y1.2 0 0,760 0 Y1.3 0,747 0 0 Y1.4 0,913 0 0 Y1.5 0 0,775 0 Y1.6 0,718 0 0 Y1.7 0 0,927 0 Y1.8 0 0,882 0 Y2.1 0 0,882 0 Y2.3 0 0,036 0 Y2.4 0 0,036 0 Y2.5 0 0 0,782 Y2.6 0 0,0783 0,851 Z1 0 0 0,853 Z1 0 0 0,862 Z3 0 0 0,853 Z4 0 0 0,853 Z1 0 0 0,853 Z3 0 0 0,862 Z5 0 0	X3.3				0,912			
X3.6 0,811 0,755 Y1.1 0,760 0,760 Y1.3 0,747 0,747 Y1.4 0,913 0,747 Y1.5 0,775 0,718 Y1.6 0,718 0,927 Y1.8 0,927 0,927 Y1.8 0,882 0,706 Y2.1 0,927 0,734 Y2.2 0 0,734 Y2.3 0 0,882 Y2.4 0,936 0,782 Y2.5 0 0,783 Z1 0 0,783 Z1 0 0,783 Y2.5 0 0,783 Z1 0 0,783 Z1 0 0,851 Z2 0 0,0783 Y2.5 0 0,0783 Z1 0 0,0783 Z1 0 0,0851 Z2 0 0,0851 Z3 0 0,0853 Z4 0 0,0853 Z5 0 0,0956 <t< td=""><td>X3.4</td><td></td><td></td><td></td><td>0,926</td><td></td><td></td><td></td></t<>	X3.4				0,926			
Y1.1 0,755 0,760 Y1.2 0,747 0,747 Y1.3 0,747 0,913 Y1.4 0,913 0,775 Y1.6 0,718 0,718 Y1.7 0,927 Y1.8 Y1.8 0,882 0,706 Y2.1 0,936 0,734 Y2.2 0 0,936 Y2.3 0,936 0,782 Y2.4 0,936 0,782 Y2.5 0,783 0,851 Z1 0,0783 0,851 Z2 0 0,0783 Z14 0 0,0783 Z15 0 0,0783 Z14 0 0,0783 Z15 0 0,0851 Z2 0 0,0783 Z1 0 0,853 Z3 0 0,0853 Z4 0 0,956 Z5 0 0,956 Z6 0 0,956 Z5 0 0,956 Z6 0 0,956	X3.5				0,816			
Y1.2 0,760 0 Y1.3 0,747 0 Y1.4 0,913 0 Y1.5 0,775 0 Y1.6 0,718 0 Y1.7 0 0,927 Y1.8 0,882 0 Y2.1 0 0,734 Y2.2 0 0,734 Y2.3 0 0,782 Y2.4 0 0,936 Y2.5 0 0,782 Y2.6 0 0,783 Z1 0 0,783 Z1 0 0,851 Z2 0 0,0858 Z3 0 0 0,858 Z3 0 0 0,858 Z4 0 0 0,858 Z3 0 0 0,862 Z5 0 0 0,862 Z5 0 0 0,862 Z4 0 0 0,862 Z4 0 0 0,858 Z3 0 0	X3.6				0,811			
Y1.2 0,760 0 Y1.3 0,747 0 Y1.4 0,913 0 Y1.5 0,775 0 Y1.6 0,718 0 Y1.7 0 0,927 Y1.8 0,882 0 Y2.1 0 0,734 Y2.2 0 0,734 Y2.3 0 0,782 Y2.4 0 0,936 Y2.5 0 0,782 Y2.6 0 0,783 Z1 0 0,783 Z1 0 0,851 Z2 0 0,0858 Z3 0 0 0,858 Z3 0 0 0,858 Z4 0 0 0,858 Z3 0 0 0,862 Z5 0 0 0,862 Z5 0 0 0,862 Z4 0 0 0,862 Z4 0 0 0,858 Z3 0 0	Y1.1					0,755		
Y1.3 0,747 0,747 Y1.4 0,913 0,913 Y1.5 0,775 0 Y1.6 0,718 0,718 Y1.7 0,927 0,882 Y1.8 0,882 0,706 Y2.1 0,706 0,734 Y2.2 0 0,734 Y2.3 0 0,807 Y2.4 0,936 0,936 Y2.5 0 0,782 Y2.6 0,783 0,851 Z1 0 0,858 Z3 0 0,862 Z4 0 0,862 Z5 0 0,862 Z4 0 0,862 Z5 0 0,936 Z4 0 0,862 Z5 0 0,936 Z4 0 0,936 Z5 0 0,936 Z6 0 0,936 Z6 0 0,936 Z3 0 0,936 Z4 0 0,936 Z5						0,760		
Y1.4 0,913 0,913 Y1.5 0,775 0 Y1.6 0,718 0 Y1.7 0,927 0 Y1.8 0,882 0 Y2.1 0,706 0,734 Y2.2 0 0,734 Y2.3 0,0307 0,807 Y2.4 0,936 0,936 Y2.5 0,782 0,783 Y2.6 0,783 0,851 Z1 0,085 0,858 Z3 0 0,936 Y2.4 0 0,936 Y2.5 0 0,936 Y2.6 0,938 0,938 Z1 0 0,851 Z2 0 0,936 Y2.6 0 0,9858 Z3 0 0,9858 Z4 0 0,9893 Z4 0 0,9366 Y2.6 0 0,9366 Y2.7 0 0 0,936 Y2.6 0 0 0,936 Y2.6 0	Y1.3					0,747		
Y1.5 0 0,775 0 Y1.6 0,718 0,718 0 Y1.7 0 0,927 0 Y1.8 0,882 0 0 Y2.1 0 0,734 0 Y2.2 0 0,734 0,734 Y2.3 0 0,807 0,807 Y2.4 0 0,936 0,782 Y2.5 0 0,783 0,783 Y2.6 0,783 0,851 0,851 Y2 0 0 0,858 0,853 Y2.4 0 0 0,851 0,851 Y2.5 0 0 0,851 0,851 Y2.6 0 0 0,858 0,853 Y2 0 0 0,858 0,853 Y2.6 0 0 0,862 0,858 Y2.5 0 0 0,956 0,956 Y2.6 0 0 0,956 0,956	Y1.4					0,913		
Y1.6 0,718 0,927 Y1.7 0,927 0,882 Y1.8 0,882 0,706 Y2.1 0,734 0,734 Y2.2 0 0,734 Y2.3 0,807 0,807 Y2.4 0,936 0,936 Y2.5 0 0,782 Y2.6 0,783 0,851 Z2 0 0,885 Z3 0 0,883 Z4 0 0,862 Z5 0 0,851 Z6 0 0,853 Z4 0 0,936 Y2.6 0 0,851 Z1 0 0,851 Z2 0 0,851 Z4 0 0,967 Z5 0 0,956 Z6 0 0,956 Z6 0 0,920						0,775		
Y1.8 0,882 0,706 Y2.1 0,706 0,734 Y2.2 0,807 0,807 Y2.3 0,936 0,936 Y2.4 0,936 0,782 Y2.5 0,782 0,783 Y2.6 0,783 0,851 Z1 0,851 0,858 Z3 0 0,883 Z4 0 0,862 Z5 0 0,956 Z6 0 0,956 Z5 0 0,956 Z6 0 0,956 Z6 0 0,956 Z6 0 0,920						0,718		
Y1.8 0,882 0,706 Y2.1 0,706 0,734 Y2.2 0,807 0,807 Y2.3 0,936 0,936 Y2.4 0,936 0,782 Y2.5 0,782 0,783 Y2.6 0,783 0,851 Z1 0,851 0,858 Z3 0 0,883 Z4 0 0,862 Z5 0 0,956 Z6 0 0,956 Z5 0 0,956 Z6 0 0,956 Z6 0 0,956 Z6 0 0,920	Y1.7					0,927		
Y2.1 0,706 Y2.2 0,734 Y2.3 0,807 Y2.4 0,936 Y2.5 0,782 Y2.6 0,783 Z1 0,851 Z2 0,883 Z3 0,883 Z4 0,936 Y2.6 0,936 Y2.6 0,936 Y2.6 0,851 Y2.6 0,851 Y2.6 0,9858 Y2.6 0,9859 Y2.6 0,9859 Y2.6 0,990								
Y2.2 0,734 Y2.3 0,807 Y2.4 0,936 Y2.5 0,782 Y2.6 0,783 Z1 0,0783 Z2 0,851 Z3 0,858 Z3 0,853 Z4 0,862 Z5 0,936 Z4 0,936 Z5 0,956 Z6 0,956 Z6 0,956 Z6 0,956 Z6 0,956 Z6 0,920							0,706	
Y2.3 0,807 Y2.4 0,936 Y2.5 0,782 Y2.6 0,783 Z1 0,0807 Z2 0,783 Z3 0,851 Z4 0,883 Z5 0,862 Z5 0,956 Z6 0,956 Z7 0 0,920								
Y2.4 0,936 Y2.5 0,782 Y2.6 0,783 Z1 0,851 Z2 0,858 Z3 0 0,883 Z4 0 0,862 Z5 0 0,936 Z6 0 0,936 Z7 0 0 0,936								
Y2.5 0,782 Y2.6 0,783 Z1 0,783 Z2 0,851 Z3 0,858 Z4 0,862 Z5 0,956 Z6 0,956 Z7 0,920								
Y2.6 0,783 Z1 0,851 Z2 0 Z3 0 Z4 0,851 Z5 0 Z6 0,956 Z7 0								
Z1 0.851 Z2 0.851 Z3 0 0.858 Z4 0 0.862 Z5 0 0 0.956 Z6 0 0 0.920								
Z2 0.858 Z3 0.858 Z4 0.803 Z5 0.956 Z6 0.967 Z7 0							,	0,851
Z3 0,893 Z4 0,862 Z5 0,956 Z6 0,967 Z7 0 0,920								
Z4 0,862 Z5 0 0,956 Z6 0 0,967 Z7 0 0 0,920								
Z5 0,956 Z6 0,957 Z7 0 0,920								
Z6 0,967 Z7 0 0,920								
Z7 0,920								
	Z8							0,943

Source: data process 2023

2) Discriminant validity – Fornell Lecker

The Fornell Lecker Criterion method is a measurement method that suggests comparing the square root value of the Average Variance Extracted (AVE) of each latent variable with the correlation between other variables in the model.

	Corporate Sustainability (Y2)	EGB (Y1)	GPOS (Z)	Green Commitm ent (X3)	Green Innovation (X2)	Green Knowledge Management (X1)	Moderating Effect 1
Corporate Sustainabilit y (Y2)	0,795						
EGB (Y1)	0,479	0,813					
GPOS (Z)	0,413	0,822	0,907				
Green Commitment (X3)	0,296	0,838	0,832	0,866			
Green Innovation (X2)	0,271	0,556	0,572	0,481	0,883		
Green Knowledge Management (X1)	0,050	0,211	0,160	0,193	0,117	0,808	
Moderating Effect 1	0,252	-0,279	-0,392	-0,367	0,045	0,005	1,000

 Table 5: Fornell-Larcker Criterion Test Results

Source: data process 2023

From table 5 it is known that the AVE square root value of each variable is greater than the correlation value between the variables and the other variables in the model, so the model is said to have good discriminant validity values.

3) Average variance extracted (AVE)

Discriminant validity, is a reflexive indicator measurement based on cross loading with latent variables. Another method is to compare the value of the square root of average variance extracted (AVE) for each construct, with the correlations between other constructs in the model. In this regard, it is recommended that the measurement value should be greater than 0.50. Furthermore, the results of the Discriminant validity test can be seen as the visualization of Table 6. as follows:

	Average Variance Extracted (AVE)
Corporate Sustainability (Y2)	0,631
EGB (Y1)	0,661
GPOS (Z)	0,823
Green Commitment (X3)	0,749
Green Innovation (X2)	0,779
Green Knowledge Management (X1)	0,653
Moderating Effect 1	1,000

 Table 6: Average Variance Extracted (AVE)

Source: data process 2023

The results of reliability test can be seen as the visualization of Table 7 as follows:

	Cronbach's Alpha	Composite Reliability
Corporate Sustainability (Y2)	0,884	0,911
EGB (Y1)	0,925	0,939
GPOS (Z)	0,970	0,974
Green Commitment (X3)	0,933	0,947
Green Innovation (X2)	0,943	0,955
Green Knowledge Management (X1)	0,942	0,949
Moderating Effect 1	1,000	1,000

Table 7: Reliability Test Results

Source: data process 2023

Based on Table 7 above, it can be explained that the results of the Cronbach's Alpha & Composite reliability test show a satisfactory value, where all latent variables are reliable because all variable values have a composite reliability value of 0.70. In other words, the questionnaire used as an instrument in this study is reliable or consistent. Thus, it can be concluded that all indicators are indeed a measure of their respective constructs.

Evaluation of Inner Model

This study uses a structural equation model with a Partial Least Square (PLS) approach. Before analyzing, it is necessary to test or evaluate the empirical research model. The results of testing the empirical model of this study can be seen in the visualization of Figure 2 as follows:

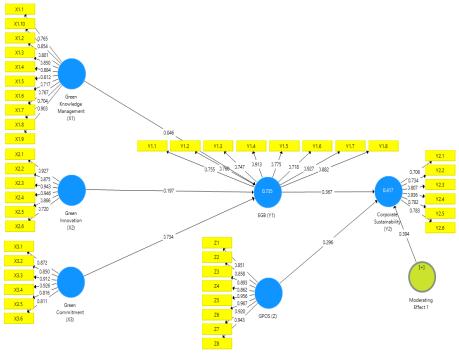


Figure 2: Path Analysis

Coefficient of Determination Test / R Square (R²)

The evaluation of the inner model is done by looking at the Coefficient of Determination. The Coefficient of Determination aims to measure how far the model's ability to explain the variance of the dependent variable is. The value of the coefficient of determination is between 0 and 1.

	R Square	R Square Adjusted
EGB (Y1)	0,735	0,731
Corporate Sustainability (Y2)	0,417	0,408

Table 8: R Square (R ²) Value of Research M

Source: data process 2023

Seen in Table 8 the relationship between constructs based on the Adjusted R-square value, it can be explained that the Employee Green Behaviour (EGB) (Y1) variable is 0.735 (substantial), this shows that 73,5% EGB (Y1) can be influenced by Green Knowledge Management (X1), Green Innovation (X2) & Green Commitment (X3), while the remaining 26,5% is influenced by other variables outside the research. The relationship between constructs based on the Adjusted R-square value can be explained that the Corporate Sustainability (Y2) variable is 0.417 (moderate), this shows that 41.7% of the Corporate Sustainability (Y2) variable can be influenced by the Green Knowledge Management (X1), Green Innovation (X3) & EGB (Y1) while the remaining 58,3% is influenced by other variables outside the research.

Hypothesis Testing

This stage is carried out to determine whether the research hypothesis proposed in the research model is accepted or rejected. In testing the proposed hypothesis, it can be seen from the path coefficients, the T-Statistic value through the bootstrapping procedure and the p-value.

	Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
Green Knowledge Management (X1) -> EGB (Y1)	0,046	0,052	0,039	1,166	0,244
Green Innovation (X2) -> EGB (Y1)	0,197	0,198	0,024	8,238	0,000
Green Commitment (X3) -> EGB (Y1)	0,734	0,734	0,022	33,833	0,000
Moderating Effect 1 -> Corporate Sustainability (Y2)	0,394	0,393	0,053	7,473	0,000
EGB (Y1) -> Corporate Sustainability (Y2)	0,367	0,369	0,183	2,004	0,046

 Table 9: Direct Effect Result

Source: data process 2023

Discussion

1) Green Knowledge Management has effect on Employee Green Behavior

The better implementation of Green Knowledge Management will have an impact on increasing Employee Green Behavior. This study proves that Green Knowledge Management has no effect on Employee Green Behavior. The lowest score on Green Knowledge Management is Green Knowledge Storage. Organizations are not yet optimal in having learning media for employees to study (Example: Training, OJT, etc.). Previous research that does not support the results of this study is the research of Olawole et.al (2019) & Shumaila Naz et.al (2022) stating that environmental knowledge influences Employee Green Behavior.

2) Green Innovation has effect on Employee Green Behavior

The research results show that better Green Innovation will affect the improvement of Employee Green Behavior. The most dominant dimension of Green Innovation is Green Process Innovation. The company has effectively reduced hazardous materials/hazardous waste in its operational processes. The lowest score on Green Innovation is Green Process innovation. Companies have not optimally reduced raw materials that cause pollution and emissions. This study supports the results of research conducted by Aboramadan (2020) which proves that green innovation has an impact on Employee Green Behavior. Research by Li et.al (2022) also states that green innovation has an impact on Employee Green Behavior.

3) Green Commitment has effect on Employee Green Behavior

The better the implementation of Green Commitment will affect the increase in Employee Green Behavior. The most dominant Green Commitment dimension is the Normative Commitment that employees remain in an environmentally friendly organization throughout their career. The lowest dimension on the Green Commitment is the Continuance Commitment. Where employees state that there are no serious consequences for leaving an organization that cares about environmental sustainability is the scarcity of alternative opportunities. The results of previous research conducted by Richard (2021) and Samad (2022) state that commitment has an effect on employees' green environment.

4) Green Perceived Organizational Support has moderate the influence of Employee Green Behavior to Corporate Sustainability

The results of the study prove that Green Perceived Organizational Support moderates the influence of Employee Green Behavior on Corporate Sustainability. The most dominant dimension in Green Perceived Organizational Support is Fairness. The organization is very concerned about the welfare of employees who carry out environmentally friendly behavior. The lowest score on Green Perceived Organizational Support is Working Conditions. Employees are still dissatisfied with work related to green management. Several previous studies that support the results of this study are Hafizatul (2021), Neruja S et.al (2022) & Mohammed (2022) which prove that Organizational Environmental Support influences Employee Green Behavior and Organizational Sustainability. Meanwhile, research by Bajie Zhang et al (2021) shows that Green Perceived Organizational Support positively moderates the relationship between Employee Green Behavior and Corporate Sustainability.

5) Employee Green Behavior has effect Corporate Sustainability

The results of the study prove that the better the implementation of Employee Green Behavior will affect Corporate Sustainability. The most dominant dimension in Employee Green Behavior is Frugal Behavior. Employees make improvements that result in reduced costs. The lowest score on Employee Green Behavior is Altruistic Behavior. Employees are not optimal in fundraising when fellow employees are struck by a disaster. While the most dominant Corporate Sustainability is the Social dimension. The company has a program that empowers the surrounding community. The lowest score on Corporate Sustainability is economy. Employees are of the opinion that the company does not yet have optimal performance targets for cost efficiency. Previous research that supports the results of this study is Abdullah Kaid et.al (2021) proving that Employee Green Behavior affects the Sustainability Performance of Environmental Companies.

4. CONCLUSIONS AND RECOMMENDATIONS

Conclusion

Based on the research findings and discussion, the researcher has answered all the research problems previously described in this study. From the analysis that has been done, the results are:

- 1) Green Knowledge Management has no effect on Employee Green Behavior
- 2) Green Innovation has a positive and significant effect on Employee Green Behavior
- 3) Green Commitment has a positive and significant effect on Employee Green Behavior
- 4) Green Perceived Organizational Support has moderate the influence of Employee Green Behavior to Corporate Sustainability
- 5) Employee Green Behavior has a positive and significant Corporate Sustainability

Recommendations

Organization

- 1) Green Knowledge Management: Companies are advised to increase employee tacit knowledge and Green Knowledge Storage.
- 2) Green Innovation: Companies are advised to reduce hazardous materials, hazardous waste and pollution in activities in making goods/services.
- 3) Green Commitment : Companies are advised to increase the green commitment of employees by paying attention to career paths for employees who behave in an environmentally friendly manner.
- 4) Employee Green Behavior: Companies should motivate employees to behave effectively and efficiently in order to produce reduced costs for production
- 5) Green Perceived Organizational Support: Companies are advised to increase the welfare and satisfaction of employees who carry out environmentally friendly behavior by

providing rewards

6) Corporate Sustainability:Companies are advised to improve community empowerment programs and have performance targets for cost efficiency in order to increase Corporate Sustainability.

Further Research Suggestions

After conducting research with several limitations, the author has several suggestions for further research, including:

- 1) Analyze Corporate Sustainability more deeply and broadly, focusing on one type of model and with various modifications to the research model based on the existing literature or journals so that the results obtained are even better.
- 2) Researchers suggest that researchers conduct further research on factors outside the variables studied, such as Green Intellectual Capital.

References

- 1) Abdullah Kaid, Hamid Mahmood, Redhwan Mohammad. (2021). The joint impact of green human resource management, leadership and organizational culture on employees' green behaviour and organisational environmental performance
- Bajie Zhang et al. (2021). How Does Employee Green Behavior Impact Employee Well-Being? An Empirical Analysis
- Chang (2016). The Influence of Proactive Green Innovation and Reactive Green Innovation on Green Product Development Performance: The Mediation Role of Green Creativity. Journal Sustainability, Volume 8 Issue 10
- 4) Farooq et.al (2021). The impact of green organizational and human resource factors on developing countries' small business firms tendency toward green innovation: A natural resource-based view approach. Creativity and Innovation Management Volume 30, Issue 4 p. 726-741
- 5) Gauthier and Zhang. (2020). Green knowledge management and strategic renewal: a discursive perspective on corporate sustainability. International Journal of Productivity and Performance Management, Vol 69 Issue 8
- 6) Grazzi et al. (2019). A Conceptual Framework to Measure Green Innovation in Latin America and the Caribbean. Inter American Development Bank.
- 7) Hui Li, Yiyun Li, Muddassar Sarfarz, Ilknur Ozturk. (2022). Enhancing firms' green innovation and sustainable performance through the mediating role of green product innovation and moderating role of employees' green behavior
- 8) Hafizatul Alina, Mohd Khalid, Haryanni Harun, Azelin Mohamed Noor and Hezlina Mohd Hashim. (2021). Green Human Resource Management, Perceived Organizational Support and Organizational Citizenship Behavior towards Environment in Malaysian Petroleum Refineries
- 9) Liao. (2016). Innovation Capacity and the Implementation of Eco-innovation: Toward a Contingency Perspective. Business Strategy and the Environment, Volume 26 Issue 1
- 10) Mohammed Aboramadan. (2020). The effect of green HRM on employee green behaviors in higher education: the mediating mechanism of green work engagement

- 11) Mohammed Aboramadana. Joseph Crawford. Mehmet Ali Turkmenoglu, Caterina Farao. (2022). Green inclusive leadership and employee green behaviors in the hotel industry: Does perceived green organizational support matter?
- 12) Neruja Sivalingam, A. Anton Arulrajah. (2022). The Impact of Organizational Environmental Support on Organizational Sustainable Performance: The Mediating Role of Employee Green Behaviour in selected Commercial banks in Batticaloa Region of Sri Lanka
- Olawole Fawehinmi, Mohd Yusoff Yusliza, Zaleha Mohamad, Juhari Noor Faezah and Zikri Muhammad. (2019). Assessing the green behavior of academics : The role of green human resource management and environmental knowledge
- 14) Paille & Meija-Morelos. (2019). Organisational support is not always enough to encourage employee environmental performance. The moderating role of exchange ideology. Journal of Cleaner Production. Vol 220, pages 1061-1070
- 15) Pinzone (2019). Effects of 'green' training on pro-environmental behaviors and job satisfaction: Evidence from the Italian healthcare sector. Journal of Cleaner Production. Vol 226, pages 221-232
- 16) Raineri and Paillé (2016). Linking Corporate Policy and Supervisory Support with Environmental Citizenship Behaviors: The Role of Employee Environmental Beliefs and Commitment. Journal of Business Ethics, 137, 129-148
- 17) Ruiz-Perez, Lleo & Ormazabal (2021). Employee sustainable behaviors and their relationship with Corporate Sustainability: A Delphi study. Journal of Cleaner Production. Vol 329. https://doi.org/10.1016/j.jclepro.2021.129742
- 18) Svensson et al. (2016). Rapid changes in genetic architecture of behavioural syndromes following colonization of a novel environment. Journal of Evolutionary BiologyVolume 29, Issue 1 p. 144-152
- 19) Sarfraz Ahmed Dakhan, Jan Muhammad Sohu, Aneela Jabeen, Manzoor Ali Mirani, Javed Ahmed Shaikh, Shuja Iqbal. (2020). Impact of Green HRM on Employees Pro-Environmental Behavior: Mediating Role of Women Environmental Knowledge at Higher Education Institutions
- 20) Shumaila Naz & Samia Jamshed & Qasim Ali Nisar & Nadia Nasir. (2022). Green HRM, psychological green climate and pro-environmental behaviors: An efficacious drive towards environmental performance in China
- Samad Rahimiaghdam, Toktam Niroumand. (2022). Analyzing the Relationship between Perceived Social Responsibility and Employees' Affective Commitment and Green Behaviors: Mediating Role of Ethical Climate
- 22) Tapia-Fonllem (2013). Assessing Sustainable Behavior and its Correlates: A Measure of Pro-Ecological, Frugal, Altruistic and Equitable Actions. Journal Sustainability. 5(2), 711-723; https://doi.org/10.3390/su5020711
- 23) Upward and Jones, 2016. An Ontology for Strongly Sustainable Business Models : Defining an Enterprise Framework Xing and Starik (2017). Taoist leadership and employee green behaviour: A cultural and philosophical microfoundation of sustainability. Journal of Organizational BehaviorVolume 38, Issue 9 p. 1302-1319
- 24) Wenyao Zhang, Ruzhi Xu, Yuan Jiang and Wei Zhang. (2021). How Environmental Knowledge Management Promotes Employee Green Behavior: An Empirical Study
- 25) WP Richard Wickramaratne. (2021). Supervisor's Green Commitment as a Predictor of Employee Green Work Behavior
- 26) Yu, Abbas, Alvarez-Otero, and Cherian. (2022). Green knowledge management: Scale development and validation. Journal of Innovation and Knaowledge, Vol 7. DOI:10.1016/j.jik.2022.100244

