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Abstract 

Ensuring the utmost security, confidentiality, and integrity of digital communications has become an imperative 

requirement in today's world. This realization highlights the significance of employing Digital Signature 

Algorithms (DSA) in various online applications. DSA's true value lies in its ability to deliver secure digital 

signatures, assuring the verification of digital documents, messages, or transactions. This aspect holds paramount 

importance in critical domains such as online banking, e-commerce, digital contracts, and government services 

where safeguarding sensitive information is crucial. DSA encompasses diverse algorithms, including RSA, 

Elliptic Curve Cryptography (ECC), and Schnorr signatures, each possessing distinct strengths and weaknesses. 

RSA stands as one of the most prevalent DSA algorithms, although ECC is gaining popularity due to its smaller 

key size and faster performance. Moreover, Schnorr signatures are gaining attention due to their simplicity and 

efficiency. This paper introduces a novel Digital Signature algorithm scheme, incorporating robust elements like 

Hashing, Discrete Logarithm Problems (as seen in Elliptic Curve), and CHAOTIC maps for mapping, thus 

bolstering secrecy and enhancing security performance. The scheme aims to optimize speed and cost, offering a 

comparative analysis against other digital signature schemes such as RSA and the original ECDSA. 

Keywords: Digital Signature Algorithm (DSA), RON RIVEST, ADI SHAMIR, and LEONARD ADLEMAN 

(RSA), Elliptic Curve Digital Signature Algorithm (ECDSA), Galois Field (GF), Elliptic Curve Cryptography 

(ECC), Digital Signature (DS), Elliptic Curve Discrete Logarithm Problem (ECDLP), Discrete Logarithm 

Problem (DLP), National Institute of Standards and Technology (NIST). 

 

1. INTRODUCTION 

Nowadays, the meaning of cryptography involves different concepts like utilizing multimedia 

and different images of data to be contained in secret messages transmitted and received 

between different parties especially agent and government, and there are many servers those 

its main job to store the stolen secret data. That belong to the World Wide Web users, to be 

encrypted mean the ability to resist hacking tries. And the cryptographic words is including 

whole of these concepts of encryption, hacking trials stopping and so on, but Cryptography 

word can be definitely explained as the science of making data which is transmitted and 

received between two parties is useless to the backdoors attackers, what push scientists to use 

asymmetric cryptography[24] type which is authentication to secure communication between 

the requiring parties, from these authentication ways the signature and while signatures are 

used to act like a contract between two parties to fulfil its constrains. Including proof to prove 

that signer is the signature’s owner having something like an identity proof with the same 

signature. Signature validity, and non-repudiation and examples are too many for these 
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Signature usage in life’s daily applications involving Firstly communication over Internet using 

Emails, as during e-mails, trusting the email provider in factors of privacy and security isn’t 

needed. The mail can be encrypted by signing after using the receiver’s public key. By using 

this the sender can has the ability to know that there was no tampering. The only case for 

tampering to be happened is that the message wasn’t delivered by the e-mail provider. Secondly 

Code contributions where many codes were written by programmers as open source to help 

others but some people can take these codes and attributing these codes to themselves as their 

codes. Whatever the original code implementers might be volunteers or paid for those 

contributions. The project’s maintainers don’t have enough time to check each and every 

contribution. So, they need trusted people. What leads to the need to signing each contribution 

by its maker. Thirdly Software updates where all of modern devices like Smart TV / Alexa / 

Fritz Box need updates. As the original manufacturer of these devices will want to assure that 

change or replacement weren’t done in the update. So, a specific private-key belongs to the 

manufacturer’s company will be shared with the device. And when there’s update it can’t be 

installed without the signature’s checking of the company. Fourthly Cryptocurrencies while to 

prove the ownership of a bitcoin, asymmetric cryptography was used. At first, someone is 

become the coin’s owner. Then, this owner is defined as the private key’s owner, matching to 

a given public key. Fifthly Digital diplomas as during job’s applying, there’s a need for a proof 

of qualifications. Especially starting since remote working through internet, and this proof was 

written digitally. So, there is a need to DS [22]. 

And too many of applications as E-Governance, E-Learning, E-Shopping, E-Voting, etc. [23]. 

It’s clear the importance of usage of Digital Signature Algorithm, but still there is a need for 

knowledge of its improvement historically to have the ability to improve its scheme. So, if a 

look was taken on  Digital Signature Algorithm  history it will be found that In 1982 United 

states government Planned to replace RIVEST and SHAMIR  DSA  by another Algorithm to 

prevent defects and provide more of data saving, and in 1991  National Institute of Standards 

and Technology (NIST)  introduced the first version of  DSA  that was confirmed by the 

government at 1994 [1,2,3], this change faced a many objections because of difficulty to change 

most of work that depended on  RSA  to  DSA , what make government stop changing to  DSA  

till it was expired in 2013 however its strength, and still  RSA  has the same problems of need 

to too large prime key to achieve required level of security, while many of different applications 

depends on  DSA  including what cause need to larger memory, more processing steps and by 

default more time [4], what lead to thinking about new scheme that has advantages over  RSA ’s 

scheme, and overcome  RSA ’s scheme disadvantages and to be flexible replace it, this  scheme 

based on mathematical problems, point mapping,  DLP , it also enhance security performance 

of  DSA ’s scheme, and this achievement will be explained in the rest of paper paragraphs.  

This paper is structured like the following: section 2 illustrates Digital Signature Algorithm, 

section 3 illustrates RIVEST SHAMIR and LEONARD ADLEMAN  Digital Signature 

Algorithm, section 4 illustrates Elliptic Curve Digital Signature Algorithm over GF (2m), 

section 5 illustrates Main Work, section 6 illustrates Conclusion). 
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2. DIGITAL SIGNATURE ALGORITHM 

DSA  is an algorithm that depends on ECC over GF(P) field what based on  DLP  and difficult 

mathematical operations, it was proposed to overcome problems of  RSA  and standardized by  

NIST  in 1994, it has advantages over  RSA  that it needs lower key size to achieve better 

security level what lead to lower memory need, lower processing steps and lower time and has 

disadvantages of taking full exponential time to solve ECDLP what will be solved in the new 

scheme, Also  DSA  divided into two parts creation and verification of signature[5-8]. 

 

Figure 1: Dsa Scheme 

DSA has many strength and weakness points as will be described in the following [15-17] 

A. Strength-Points 

1. Widely used and well-established algorithm. 

2. Proven to be secure and efficient. 

3. Generally considered to be a good choice for government and military applications. 

B. Weakness-Points 

1. Key management can be complex. 

2. Strength depends on the size and quality of the prime numbers used. 

3. Not as widely used as some other algorithms 

Table 1: DSA Key Generation and Verification 

Generation 

Inputs 

𝒌 ≥ 𝟏𝟎𝟐𝟒, 𝒎 ≥ 𝟔𝟒 & 𝒎 < 𝒌, 

𝒑𝒓𝒊𝒎𝒆 𝒏𝒖𝒎𝒃𝒆𝒓𝒔 𝒑𝟏, 𝒑𝟐  𝒊𝒏 

𝒘𝒉𝒆𝒓𝒆 𝒑𝟏 𝒉𝒂𝒔 𝒔𝒊𝒛𝒆 𝒐𝒇𝒎  𝒃𝒊𝒕𝒔 

𝒂𝒏𝒅 𝒑𝟐 − 𝟏 𝒊𝒔 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒆 𝒐𝒇 𝒑𝟏. 

Process 

1. 𝐶ℎ𝑜𝑜𝑠𝑒 𝑡ℎ𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ℎ𝑎𝑠ℎ 𝑎𝑠  𝑠ℎ 

2. 𝐶ℎ𝑜𝑜𝑠𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑥 

𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑘𝑒𝑦. 

3. 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑔 = 𝑠ℎ
𝑝2−1

𝑝1  𝑚𝑜𝑑(𝑝2) 

4. 𝑖𝑓 𝑔 = 1 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑜 𝑠𝑡𝑒𝑝 1. 
5. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦 𝑦 =  𝑔𝑥𝑚𝑜𝑑𝑝2. 
6. 𝐶ℎ𝑜𝑜𝑠𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑘 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 <  𝑘1 <  𝑝2. 
7. 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑟 =  (𝑔𝑘1 𝑚𝑜𝑑 𝑝2) 𝑚𝑜𝑑 𝑝1. 
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8. 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑠 = (𝑘1−1(𝑠ℎ + 𝑥𝑟))𝑚𝑜𝑑𝑝1. 

Outputs 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝑚𝑖𝑥 𝑜𝑓 𝑟, 𝑠. 

Verification 

Inputs 𝑟, 𝑠, 𝑠ℎ, 𝑝1, 𝑝2 

Process 

1. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑤 𝑎𝑠 𝑚𝑜𝑑𝑢𝑙𝑎𝑟 

2. 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝑠 𝑟𝑒𝑔𝑎𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑝1 

3. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑢 =   𝑠ℎ ∗ 𝑤 𝑚𝑜𝑑 𝑝1 . 

4. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑣 =   𝑟 ∗ 𝑤 𝑚𝑜𝑑 𝑝1 . 

5. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 =  ((𝑔𝑢+𝑦𝑣)𝑚𝑜𝑑 𝑝2) 𝑚𝑜𝑑 𝑝1 

Outputs 
𝑖𝑓 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟 𝑡ℎ𝑒𝑛 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 

𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑. 

Figure 1 and Table 1 explained respectively the methodology of DSA and the steps of key 

generation and verification algorithms steps. Which is the base methodology for Digital 

signature schemes, in the next paragraph, one from most famous and most used schemes will 

be explained to understand its methodology and how it works to compare it with new modified 

scheme. 

 

3. RIVEST SHAMIR AND LEONARD ADLEMAN  DIGITAL SIGNATURE 

ALGORITHM 

RSA  considered as one of the most used algorithms in data securing during transmitting and 

receiving, it was invented by  RON RIVEST ,  ADI SHAMIR , and  LEONARD 

ADLEMAN  after a lot of attempts in April 1977, and released in 1997 as a result to its secrecy, 

it’s a one way algorithm not two ways as  DSA , also it’s based on large number factorizing 

problem what cause needs to the large size keys to achieve acceptable level of security, that 

was the reason to the need to supercomputing for large data and large keys [9,10], it’s processed 

by keeping secret of the prime numbers and encrypting the messages by any user but only who 

has the prime number can decrypt the messages, and that is one from its weakness points as 

with the same usage of super computer for trial and error, these numbers can be discovered by 

the attackers. RSA has many strength and weakness points as will be described in the following 

[15, 16, 20, and 21]. 

A. Strength-points 

1. Widely used and well-established algorithm. 

2. Relatively easy to implement. 

3. Proven to be secure if the key size is large enough. 

B. Weakness-Points 

1. Vulnerable to certain types of attacks, such as side channel attacks and chosen cipher 

text attacks. 

2. Key management can be complex. 

3. Can be slower than some other algorithms. 
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Figure 2: Rsa Scheme 

Table 2: Rsa Digital Signature Algorithm 

Generation Inputs 𝐥𝐚𝐫𝐠𝐞 𝐩𝐫𝐢𝐦𝐞 𝐧𝐮𝐦𝐛𝐞𝐫𝐬 𝐩𝟏, 𝐩𝟐. 
Process 1. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑝1 ∗

𝑝2 𝑎𝑛𝑑 ℎ𝑎𝑠ℎ 

𝑡ℎ𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒  𝑛, 𝐻 

2. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 −
𝑘𝑒𝑦  𝑛𝑜𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 ( 𝑝1 −
1) ∗ (𝑝2 −  1) 𝑒. 

3. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 −

𝑘𝑒𝑦 𝑒−1 %𝑛. 𝑑. 

Outputs 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒  𝐻𝑑% 𝑛 𝑆 

Verification Inputs S, H,n. 

Process Compute 𝑠𝑒% 𝑛  𝐻1 

Outputs 𝐼𝑓 𝐻 =
=  𝐻1, 𝑆𝑜 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑. 

Figure 2 and Table 2 explained the methodology and steps of RSA Scheme while being used 

in Digital Signature. 

Where RSA is the most used scheme in Digital Signature Algorithms, then in the next 

paragraph the main scheme that will be modified to the new scheme will be explained, 

including its importance differences between it and RSA, its strength and weakness points. 

 

4. ELLIPTIC CURVE OVER GF (2m) DIGITAL SIGNATURE ALGORITHM 

Elliptic curve cryptography  is one of private-key cryptography and symmetric schemes 

algorithms, it’s based on mathematical problems and finite fields, it was invented by  NEAL 

KOBLITZ  and  Victor S. Miller  in 1985, and started in wide spreading in 2004 [11-13], its 

strength  being in the difficulty to solve the mathematical equation with many coefficients, it 

https://en.wikipedia.org/wiki/Neal_Koblitz
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doesn’t need large keys with comparing to  RSA  to get equivalent level of security, but it takes 

full exponential time to solve ECDLP due to its dependability on large prime numbers when 

it’s working over GF(P), but when it’s working over GF(2m) it depending on binary or 

polynomial operation to be in the same cycle of the finite field what leads to speeding the 

processing of the algorithm as machines languages are binary, what lead to faster processing 

[14,15]. 

Table 3: Ecdsa over Gf (2m) 

Generation Inputs order and base point  O, BP. 

Process 1. Hashing the message  H. 

2. Choosing two random integers in 

limits of [1, O] one Of them is private-

key  K, private-key as PV. 

3. Computing PV * BP Over GF (2m)  

private-key as PK. 

4. Computing K * BP  K.X, K.Y. 

5. R = K.X mod O. 

6. Computing Modular Inverse of K* (H 

+ PV*R) mod O  S. 

7. If R or S equal to zero return and 

reselect K. 

Outputs Signature is combined of R, S. 

Verification Inputs R, S, BP, H, PK, O. 

Process 1. If R, S negatives or non-integers  

signature isn’t valid. 

2. Computing Modular Inverse of S  

T. 

3. Computing H*T mod O, R *T mod O 

 L, Q. 

4. Computing L* BP + Q * PV 

depending on addition and 

multiplication rules of GF(2m)  X, 

Y. 

Outputs If X mod O not equals to R  Signature 

isn’t valid. 
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Figure 3: Key Generation Flowchart 

 

 

Figure 4: Key Verification Flowchart 

Table 3, Figure 3 and Figure 4, explain the flow of steps of ECDSA over GF (2m) including 

key generation and verification steps. 

ECDSA has many strength and weakness points as will be described in the following [25, 26]. 
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Strength-points 

1. More secure and efficient than DSA. 

2. Widely used in modern applications. 

3. Good choice for resource-constrained environments. 

Weakness-Points 

1. Requires careful selection of elliptic curves. 

2. Security depends on the quality of the random number generator used. 

3. Not as widely used as some other algorithms. 

A. Comparison between ECDSA & RSA 

From the explained paragraphs it can be deduced the difference between DSA that depends on 

ECC and the one that depends on RSA, as RSA need large size keys that leaded to need to more 

time and larger memory and supercomputing while securing large data, on the contrast ECC 

that uses lower keys what leaded to faster execution and need to lower memory than RSA [4, 

13-16]. 

Table 4: Nist Recommended Security Bit Level Security 

Bit Level “RSA” ECC 

80 1024 160 

112 2048 224 

128 3072 256 

192 7680 384 

256 15360 512 

 

 

Figure 5: Ecdsa Key Size with Security Bit Level 
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Figure 6: Rsa Key Size with Security Bit Level 

Table 4 [16] , Figures 5 and 6 explained the dependability of both RSA and ECDSA security 

performance on key size which shows that how RSA needs very big keys to achieve good 

security performance which needs too much resources. 

 

5. CONTRIBUTION  

This paper Exploits the advantages of ECC at GF(2m) and modified the algorithm by using 

CHAOTIC mappings to increase complexity of Digital Signature Algorithm and at the same 

time not increasing the size of the key needed in ECDSA  so saving time due usage of ECDSA  

through GF(2m), and enhancing security performance by using CHAOTIC maps as it will be 

explained in this paragraph where CHAOTIC maps are group of functions that map points 

between domains and used to increase equations complexity using different techniques like 

circular parameters, exponentiation, discrete and continuous timing, this was achieved through 

applying ECDSA  steps these were explained in the previous paragraphs with changing the 

default equation to be dependable on GF(2m) instead of Galois Prime Field what made the 

points cycle wider and faster than GF(P) on software processes using Parallel programming 

through Message Passing Interface and faster on hardware processes because of dependability 

on binary operations, and then a new concept was used in the new algorithm which is Message 

Passing Interface which made the new Algorithm even faster than ECDSA  over GF(P),then 

CHAOTIC mapping was applied to transfer the points from one plan to another plan, so any 

attacker needs to change whole attacking protocol to has the ability to keep trying to break of 

system security, then with taking in consideration the results for signature verification through 

very complex mathematical equation, what make success in system security breaking mostly 

impossible, during the try to achieve this target there were many of problems including how to 

implement, how to compare, how to know it’s the best solution for these problems, a python 

language used to implement coding of the so difficult implemented algorithm because python 
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uses interpreter which compile code more faster, and to compare results with other algorithms 

there was a need to implement each algorithm by python too to compare through the same 

environment including CPU cores and compiler, then it was tried to be attacked through the 

American standard steps of attack types which include try to forge message or hash or even 

finding one point through the field which all were failed because of the strength of the algorithm 

and perfect implementation. 

A. CHAOTIC maps 

In this paragraph the second methodology after the methodology of Elliptic Curves over Gf 

(2m) that the new scheme depended on will be explained where CHAOTIC Maps is the way of 

mapping or translating of a point from one domain to another domain which by applying in the 

new algorithm will increase the complexity of the algorithm as for searching for the translated 

point, there is a need to know in which domain that point is located. 

Next part of paragraph will explain CHAOTIC mapping which also it has many types for 

example: 

1. BOGANDOV maps 

Table 5: BOGANDOV Mapping 

Parameters Equation Figure of mapping 

€ =  0 

µ =  0 

𝑘 =  1.2 
 

𝑥𝑛+1  =  𝑥𝑛 +  𝑦𝑛+1 

𝑦𝑛+1

=  𝑦𝑛 +  𝜖𝑦𝑛

+ 𝑘𝑥𝑛(𝑥𝑛 − 1)
+  𝜇𝑥𝑛𝑦𝑛 

 
 

2. ARNOLD CAT maps 

Table 6: ARNOLD CAT Mapping 

Parameters Equation Figure of mapping 

€ =  0 

µ =  0 

𝑘 =  1.2 
 

𝑥𝑛+1  =  2 ∗ 𝑥𝑛 +  𝑦𝑛 

𝑦𝑛+1 =  𝑦𝑛 + 𝑦𝑛 
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3. DUFFING maps 

Table 7: DUFFING Mapping 

Parameters Equation Figure of mapping 

a = 2.75 

b = 0.2 

 

𝑥𝑛+1  =  𝑦𝑛 

𝑦𝑛+1

=  −𝑏 ∗ 𝑥𝑛

+ 𝑎 ∗ 𝑦𝑛 − 𝑦𝑛
3 

 

 

4. CIRCULAR maps 

Table 8: Circular Mapping 

Parameters Equation Figure of mapping 

𝜔 = 0.333 

𝐾 =  4𝜋 
 

𝑥𝑛+1  

=  𝑥𝑛 +  𝜔

+
𝑘

2𝜋
sin(2 ∗ 𝜋

∗ 𝑥𝑛) 
 

 

5. HENON maps 

Table 9: HENON Mapping 

Parameters Equation Figure of mapping 

𝐴 =  1.4 

𝐵 =  0.3 

 

𝑥𝑛+1  = 1 − 𝐴 ∗ 𝑥𝑛
2 +  𝑦𝑛 

𝑦𝑛+1 =  𝐵 ∗ 𝑥𝑛 

 

 

From Table 4 to table 8 explained little types of CHAOTIC maps where parameters represented 

constants, equations represented the equation of mapping and the form explained the domain 

shape where the equation of ECDSA over GF (2m) will be mapped [15-21]. 
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B. Parallel Programming Using Message Passing Interface 

In this paragraph the third methodology that the new scheme depended on will be explained 

where Message Passing Interface is used to help in communicating and synchronizing, the 

compiling of threads or processes between logical cores by of the CPU by provide possibility 

of how each process communicate with each other to run your threads faster, and that exactly 

what was used in this algorithm applying by assigning each part and each function to a separate 

core to run code in parallel. 

A Dell Laptob with ram 16 Gb, and processor of 2.3 GHZ was  used for the experiments. 

 

Figure 7: Screenshot for Coderunning after Usage of Message Passing Interface in 

Signing Algorithm 

 

Figure 8: Screenshot for Code Running After Usage of Message Passing Interface In 

Verifying Algorithm 

Figures 7 and 8 showed a screenshots for a real experiment applied.  
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Table 10: New Scheme’s Flow of Steps 

Generation Inputs order and base point  O, BP. 

Process 1. Hashing the message  H. 

2. Choosing two random integers in limits of [1, O] One of 

them is private-key  K, private-key as PV. 

3. Computing PV * BP over GF (2m)  private-key as PK. 

4. Computing K * BP  K.X, K.Y. 

5. Applying CHAOTIC map (HENON) on K.X, K.Y  

C.X, C.Y. 

6. Computing round (C.Y) mod O  R. 

7. Computing Modular Inverse of K* (H + PV*R) Mod O  

S. 

8. If R or S equal to zero return and reselect K. 

Outputs Signature is combined of R, S. 

Verification Inputs R, S, BP, H, PK, O. 

Process 1. If R, S negatives or non-integers  signature isn’t valid. 

2. Computing Modular Inverse of S  T. 

3. Computing H*T mod O, R *T mod O  L, Q. 

4. Computing L* BP + Q * PV depending on addition and 

Multiplication rules of GF(2m)  X, Y. 

5. Applying same CHAOTIC mapping on X, Y  C.X, C.Y. 

6. Computing round (C.Y) mod O  Result. 

Outputs If Result equals to R  Signature is valid. 

 

 

Figure 9: New Scheme's Key Generation Flowchart 
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Figure 10: New Scheme's Key Verification Flowchart 

Table 9, Figure 7 and Figure 8, explain the flow of steps of the new scheme including key 

generation and verification steps. 

In the next table a result of the applied experiment to test the new scheme will be shown. 

Table 11: Example for New Scheme Experiments 

CHAOTIC type| 

Message- 

Total timing 
  

 

Inputs n = 15692754338466701909589473558033504588 

31205595451630533029 

k = 15427255652165239857892369562652652652 

35675811949404040041 

d = 12755521911132123000120304391871461646 

46146646466749494799 

x = 0x36B3DAF8A23206F9C4F299D7B21A9C36 

9137F2C84AE1AA0D 

a = 0x2866537B676752636A68F56554E12640 

276B649EF7526267 

b = 0x64210519E59C80E70FA7E9AB72243049 

FEB8DEECC146B9B1 

y = 0x765BE73433B3F95E332932E70EA245C 

A2418EA0EF98018FB 

 

Device Dell, ram 16 Gb, CPU 2.3 GHZ  
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ARNOLD CAT 0.2 s 0.2 s 0.2 s 

Signature r = 

5313955423906

8037376472306

2472770043931

0940120530070

04175  

s = 

5254319865189

8175299643170

1441614899217

7749092094696

77193  

r = 

53139554239068

03737647230624

72770043931094

01205300700417

5 s = 

12179215639545

19809777947985

54290616551625

80056072610538

6  

r = 

531395542390680373764723062472

770043931094012053007004175  

s = 

867916513449366549461244070331

995700072314597891317663873  

CIRCULAR 0.2 s 0.2 s 0.2 s 

Signature r = 

1050335488118

6753288467681

5334626076645

0830835629103

775744  

s = 

5679669499530

8587792369094

0903675730392

3179379646419

77970  

r = 

105033548811867

53288467681533

46260766450830

83562910377574

4 s = 

164327119829556

10590505403801

63514477261688

29315898406163  

r = 1050335488118675328 

84676815334626076645083 

0835629103775744  

s = 91045147688347067438 

850330979405653124685762 

6646489964650  

HENON 0.2 s 0.2 s 0.2 s 

Signature r = 

4969409451034

6250004795438

9065419037343

3130981890289

82784  

s = 

5624380274797

2472083632733

9994531129909

5625390681199

70610  

r = 

49694094510346

25000479543890

65419037343313

09818902898278

4  

s = 

15879819735619

49488176904371

07206847243413

43041937639880

3  

r = 4969409451034625000 

47954389065419037343313 

098189028982784  

s = 90492255441010951730 

11397088849119307641022 

27749967957290  
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Table 12: Comparison between Old Scheme of Key Size 192 Bit and New  

Scheme of 239 Bi 

 ECDSA The new scheme 

Parameters n = 6277101735386680 

7638357894231760590 

13767194773182842284081 

k = 

6140507067065001063065065

5656674055600061615565656

65656654 

d = 57956474706733993831 

10260604924628771599304 

46474 

p = 62771017353866807638 

35789423207666416083908 

700390324961279 

x = 0x188DA80EB03090F67 

CBF20EB43A18800F4FF0A 

FD82FF1012 

a = 0xFFFFFFFFFFFFFFFFF 

FFFFFFFFFFFFFFEFFFFFF 

FFFFFFFFFC 

b = 0x64210519E59C80E70F 

A7E9AB72243049FEB8DEE 

CC146B9B1 

y = 

0x7192b95ffc8da78631011ed 

6b24cdd573f977a11e794811 

 

fhex= 

0x800000000000000000000000000000

000000000000000000001000000001 

n= 

22085588309729804119791218759286

48145578869937767132309367150412

07411783 

k= 

17127872556521652396728578923695

62652652652356758119494040400416

70216363 

d= 

14564275552191153465132123000753

41203043918714616464614664646674

94947990 

a= 

0x32010857077C5431123A46B808906

756F543423E8D27877578125778AC7

6 

b= 

0x790408F2EEDAF392B012EDEFB33

92F30F4327C0CA3F31FC383C422AA

8C16 

x= 

0x5894609CCECF9A92533F630DE71

3A958E96C97CCB8F5ABB5A688A23

8DEED 

y= 

0x6DC2D9D0C94EBFB7D526BA6A6

1764175B99CB6011E2047F9F067293F

57F5 

Key size 192 239 

Execution time Generat-ion Verif-ication Generat-ion Verification 

 

0.15s 0.3s 0.1s 0.1s 

 

0.13s 0.3s 0.1s 0.1s 

 

0.13s 0.3s 0.1s 0.1s 

Signature for r= 

3342403536405981729393488

3346946004155968818268693

51677613, 

r= 

45253958851228480142169423575273

11176654002844648495917801579742

1359928  
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s= 

3356914806526037526812507

1153874720749419645068781

30591120 

s=  

76155067061885854692549705982030

36598566265054549839825082199592

507920 

Signature for 

   

r= 

3342403536405981729393488

3346946004155968818268693

51677613, 

s= 

1791949307240885006254016

6224571995918215072947799

75390487 

r=  

45253958851228480142169423575273

11176654002844648495917801579742

1359928  

s=  

18183164900909038119011609709509

74953469349736898665484311920662

47966837 

Signature for  

 

 

r= 

3342403536405981729393488

3346946004155968818268693

51677613, 

s= 

2890326820102414304538717

6924313549532770052367383

72811387 

r=  

45253958851228480142169423575273

11176654002844648495917801579742

1359928  

s=  

17286021551187793365689256008025

74939691220465108947737355307877

67717906 

Tables 10, 11 explain the advantages of the new scheme GFECDSA over ECDSA while the 

new scheme is mostly faster than ECDSA while having bigger key what means stronger 

security performance due to higher complexity. 

 

Figure 11: Comparison between Old and New Schemes Key Generation Time 
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Figure 12: Comparison between Old and New Schemes Key Verification Time 

Figure 11 & 12 explained the speed up that achieved from the original scheme to the new 

modified scheme despite the difference in the key size where the new scheme works on 239 

bits while the original one works on 139 bits. 

 

CONCLUSION 

This paper managed to create new scheme based on advantages of speed of   Elliptic Curve 

Digital Signature Algorithm  over Galois Field 2m which depends on binary field, and 

complexity of  Elliptic Curve Discrete Logarithm Problem  plus modulus features beside 

CHAOTIC maps to introduce secure scheme with the better timing than ECDSA  using Python 

compiler and Message Passing Interface for Distributed systems, and the same key size so it’s 

faster than  RSA  and need less processing and so lower cost, and these results were assured 

with software practical experiments, what will lead to big jump in the Digital Signature 

Algorithm improvement, and makes the road smooth in front the future research’s work to 

increase the algorithm complexity and decrease the time of Algorithm execution via software 

to increase the scheme perfectness, a perfect implementation to a new scheme of ECDSA  over 

GF(2m) where the scheme was inherited from  DSA  scheme but the implementation was 

completely different as it worked to optimize the compilation and debugging of  DSA  code 

beside the difference and complexity of calculation the  Modular Inverse  on  ECDSA  over 

GF(2m) through the binary field where there was no any sources describe or explain how to 

implement it clearly, so it took a lot of trials and errors, to lead to these accurate results which 

have these mentioned advantages which will help to try these new scheme in the applications 

of Communication, Code contribution, Online diplomas certificates, Cryptocurrencies, 

software updates and other many applications these have no finite and we need in our daily 

life. 
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