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Abstract 

Software defined network (SDN) is a computer-based solution that, as a smart network manager, creates a single 

control plane to monitor the entire network system that only transmits data, rather than handling each system alone 

that is wasting time and effort. The transformation from physical network to SDN poses significant challenges 

which need to be deeply considered. Scalability and reliability are considered as important factor affecting the 

SDN network. In general, the reliability and scalability requirements are as follows: the chosen data rate during 

the transmission of information, the elimination of a single cause of failure, which increases the controller's 

availability, and finally, there are several topologies that enable scalable network architecture. Moreover, these 

requirements must be fulfilled within the SDN framework. We analyze in depth the structure of several controllers 

(i.e., hierarchical, scattered, and centralized). We examined controller failure program that improves SDN network 

flexibility and allows the infrastructure more robust and scalable. 

 

INTRODUCTION 

Data volume grows dramatically, regardless of the network systems that manage such a 

massive data. Network maintenance cannot be evaded any longer, with the emergence of the 

Internet of Things era and computer clouding technologies dealing with big data, but is instead 

at the centre of business needs, efficiently operating network services in a costly, high-quality 

manner and enabling service provisioning as quickly as possible. There was a change in the 

manner company works. The physical departments and regional boundaries are unrestricted. 

Services must be always consistently available everywhere and all the times. Software Defined 

Networking (SDN) relies on cutting-edge methods that divide the data and control plane, which 

is refereed as a data transmitting white box network, without being able to make any decisions. 

Decision-making is limited only to plane controllers.  

This strategy helps to simplify more than one network equipment, to develop various 

applications that relay on a broad view of the whole network status, and for simplicity in 

integrating the unique applications. Systems for traffic balancing and routing, for instance, can 

be put into place one after the other. The default structure of software defined networking serves 

as the design for the network's central control. This form of centralization is useful for the 

network's longer term. By adding features like virtualization, selective delegation, federation 

of responsibility, in addition to SDN hybrids and conventional networking, it needs to be 

improved and further developed. The SDN network has serious problems that need to be 
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addressed. We emphasize on reliability and scalability because these two related issues have 

an impact on how effectively the SDN network performs. If the control plane design can 

handle, deliver, and maintain the same level of quality for network services as the network gets 

more complicated, then an SDN network is scalable. We assume that the scalability and 

efficiency of the software defined network means specialized coverage at any time for any 

network size. In the default configuration, SDN shifted away the control plane from the 

information plane and uses only single controller to take only one choice. But as group 

measurement increases, the requirement cannot be met by the centralized architecture. The 

strategy accepts and rejects flow by protocols such as open flow in group modules in a 

conceptually centralized controller (such as NOX and Ryu). The SDN architecture served as a 

foundation for the development of network as a service and network function virtualization 

(NVF), Therefore, there is an only one failure point and scalability concerns, and the controller 

may be dispersed across various servers simultaneously maintaining a consistent network chart 

maintained in an excellent repository to organize the task across distributed control. In addition 

to the scaling problem, the device's whole reliability is compromised by the fact that a failure 

might occur at just one point in time. The entire system will stop functioning if a centralized 

controller malfunctions for some reason involving software, hardware, or networking. Only 

Open Flow protocol-based controllers are taken into consideration here, even though all types 

of these controllers are vulnerable to failure situations. Several SDN manage plane topologies 

are given and contrasted. 

Clustered, hierarchical, and distributive SDN control architectures are the three types. 

Contrarily, we are discussing a conceptual framework for a fallback controller relies on a central 

controller duplicated with a backup controller running in a different site as a stand-by controller 

to also become a disastrous backup that provides a stable and scalable SDN device.  

SDN Controller Architecture 

The control layer exists between the application and data layers as shown in Figure 1.1. 

 

Figure 1.1: SDN Layers 
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The SDN controller meets the demands of the applications and executes actions on the 

forwarding devices while the giving network details for the various SDN applications up to the 

north bound interface drivers. It will contribute to developing flow rules and to gathering 

statistics.  

It is easier to build a separate control network from the data network. It provides dependability, 

intrusion prevention, network planning simplicity, and a safe and stable atmosphere. We'll go 

over the controller configurations and illustrate the system's flexiability and dependability. 

Independent control theory blends in with the independent network management philosophy. 

Centralized Controller 

For an SDN the default architecture is a centralized controller. The controller initializes flow 

tables, and monitors them. The controller, too, is responsible for collecting data. Figure 1.2 

illustrates a unified control plane (similar to the standardized design for Ryu and NOX). 

 

Figure 1.2 SDN Central Controllers 

On a small or medium scale, the central controller is very reliable, yet, it suffers from massive 

overflow, which represents a high level of complexity. The intended quality of service goals 

does not match due to service or even a reactive pause that does not fit the current era of machine 

clouding and IOT. The central controller is unable to function owing to a wiring failure or a 

system corruption. Under this context, a single point of is defined as the entire network, or the 

entire open-flow, breaking free of constraints or being unable to transmit any flow. Free from 

constraint, or unable to transmit any wind. If we discover that the controller is a technical 

firewall and that it is deactivated due to a power outage, the data layer device will not redirect 

any traffic since it lacks the operator, so weakening the network. The primary controller has no 

alternative or alternate plan for taking over the primary controller. The central controller lacks 
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a standby controller installed at a distinct site to preserve the important configurations in the 

event of any environmental conditions, such as a significant fire affecting the central controller, 

placing the SDN network in serious danger. 

The resulting considerations revel that the SDN’s central controller is not versatile or stable, and 

thus does not fit the professional networks or SDN-WAN. We might want to expand the 

controller's design to create a more stable system, such as distributed and hierarchical 

architecture.  

A. Hierarchical Controller  

The traditional three - layer infrastructure is used in SDN in a simplified form in this model, 

with only 2 layers hierarchy control plane, similar to that used in (e.g., kandoo). The controllers 

coordinate themselves into a hierarchy as in figure 1.3. The first level contains one master and 

multiple slave controllers at second level. The distribution controller is physically separated 

from each other and controls one area of Open Flow switches. To eliminate network cycles, 

there is no direct link between the distribution controllers. 

 

Figure 1.3 Hierarchical Controllers 

 As a Genius who controls the distribution controller relationship, each distribution controller 

is connected to the core controller. The location of the root controller in this situation is 

determined by the source and destination nodes. When a distribution controller's source and 

destination nodes are in the same region, for more precise demands, the distribution controller 

can then make a conclusion and bring in the Open Flow switches. Unless the destination and 
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source nodes are in distinct sections of the distribution controller, the transmission controllers 

will convey the query to the main controller, where a decision will be taken and extended to 

the distributed controller that it belongs to the sender.  

The distributed controller resembles a layer 2 switch, permitting the routing of a specific virtual 

LAN and an unknown VLAN to the upper multilayer switch, which functions as a virtual router 

for the multiple VLANs. The central controller in this situation is known as a multilayer switch. 

The network state will become more complicated within the hierarchical control system. Each 

physical change, whether caused by a port failure or simply a replacement, must be conveyed 

to the distributed controller and the main controller. The hierarchical structure has the potential 

for greater scalability due to its capability to allocate some function from the main system 

distributed controllers, which allows for greater flexibility than the central controller but is still 

seen as a single point of failure by the root controller. Another master controller will support 

with this issue. Each root controller may manage specialized open flow switches while also 

supporting other open flow switches. This condition results in a fairly common network 

problem known as a "loop."  

When there is more than one path connecting devices in a closed loop cabling, or in another 

setting, a network loop occurs. The conventional loop elimination approach is the spanning tree 

protocol, which blocks one port while allowing the other. The STP extends the configuration’s 

complexities, as well as the connections between controllers and the periodic checks in the 

negations. On an SDN network, it is tough to configure. 

To do the required work, for example, you must operate with HP switches that allow open flow 

policy and STP protocol, which restricts your options, as well as white box switches based on 

NetFPGA considering the complexity of execution, hierarchical design provides an approach 

that is efficient, scalable, and dependable.  

B. Distributed Contoller 

The architecture of a distributed network is shown in Figure 1.4. The controller has either a 

local sub-network view or a global view of the entire network, and each has absolute usability 

and can interact with other controllers. The controller must coordinate with other controllers in 

this so-called local-view peer-to-peer control plane to implement a query for flow and establish 

a universal flow as well. Among controllers the process of acquiring statistics always 

cooperates. Each controller collects statistics only for the sub-network they monitor.  

The controllers act as integrated managers in the control plane P2Pdistributed with global 

perspective with similar responsibilities throughout the network and can therefore process 

entire flow initialization requests created by the switches within their control region. Despite 

the fact that this design eliminates the only failure point, it struggles from the great friction 

between the different controllers. It is necessary to repeat and update to the other controller in 

any controller which reduces the controllers 'efficiency as operator to the data paths 

architecture. The infrastructure control plane has the maximum overall performance of 

reliability and scalability and the P2p with local view achieves second performance in terms of 

size and diameter. In terms of scalability, dispersed and peer-to-peer with global view control 
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perform poorly. The previous designs have a notable benefit but they kill the network in varying 

volumes when spike in load happens and make a delay in flow configuration impossible. Within 

the next segment we suggest a failover strategy to eliminate the preceding problems. 

 

Figure 1.4: Distributed Controllers 

Reduction in controller supply has a detrimental and direct effect on SDN reliability and 

scalability. We are developing a failover strategy prototype in order to build a strong SDN 

controller capable of providing uninterrupted network services. The key characteristics of a 

highly functional, failover system are durability, recoverability, and continuous operations. 

C.  Failover Strategies for Control Platform 

An additional innovation is that each controller has its own raid system data store to provide 

hardware redundancy and coordinate through an atomic messaging network that keeps all 

servers synchronised, such as the Apache zookeeper. The failover approach is as dependent on 

a backup controller linked to the network devices as it is on the main controller. A public data 

server, such as NAS storage to duplicate the resources and states, or private cloud, will manage 

them. The Ryu controller can be used to carry out the final plan; we can immediately assign 

certain rules to a central controller and a slave controller and assess the master controller's 

availability using the switch and controller's standard communications. If the data route fails 

to link the master controller and the slave control requires that its position be tested on a regular 

basis, the switch informs the slave that the data route has been adjusted. 

The master becomes the slaves, and the slave controller is elevated to the position of master c

ontroller. 

The third alternative is the best, but because each controller cannot link directly in the normal

 way, switch load is raised. 

A controller is either active in this architecture or is stand-by. The controller collects and 

processes Open Flow messages in an active situation while the controller duplicates the 
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disabled controller features in standby mode. In the case of an actual controller failure, the 

backup controller will substitute the real and complete the cycle. The standby controller 

immediately takes over monitoring of network connectivity and the handling of data flow. This 

technique is called a failure of controller. Controller failure is the opposite of failover 

procedure. 

In each situation, there are three types of failover strategies: hot standby, warm standby, cold 

standby, and prober mode. Without impacting the consumer, the time required for failover can 

be reduced. The hot standby method is the highest powerful failover solution since it retains 

the whole network state prior to collapse.  

D. Metrics for Reliability and Scalability based on Failover Strategy 

1. Health positive rating for measuring the proportion of time spent in excellent health in a 

failover program. 

2. Failover length describes the amount of time required for a system to overcome from 

failures. The failover cycle for the hot standby technique may be rather short. 

3. Time during which the primary controller is managed is known as maintenance time. 

Since milliseconds are the acceptable maximum service time delay, the SDN platform should 

at least have one stable controller with a controller dependability degree. Failure time will be 

as minimum as and near to zero.  

E. Failover Controller Requirements  

The control platform needs to fulfil the following criteria to enable multiple controllers, prevent 

single point of failure, and verify that the reserve controller has adequate processing 

capabilities for network structure and data transmission monitoring in the event of main 

controller failure:  

1) As shown in figure 1.5, each of them must have minimum two controllers and an 

individual or shared data store. 

2)  Hardware and software types are similar. 

3) To improve dependability, a separate fiber network combines the two controllers with 

huge bandwidth.  

4) An alarm scheme having varying alert rates, ranging from critical to regular. 

5) The controllers are linked to the data plane through a network. 

6) High resources like large cash processor and huge memory to withstand the hard work.  

7) To achieve the disaster backup strategy, the two controllers are placed at a separate 

location. 

8) Every controller should have an uninterruptible power supply (UPS) on it. 

9) Electricity from a station at various geographical   regions. 
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10) Each device's network adapters should be comparable, with the similar procedure, 

capability, and frequency. 

11) Every controller must be housed in a quality server center with secure access, a closed 

door, fire resistant, and a good chiller. 

 

Figure 1.5 Data Storage Shared Between Two Controllers 

F. Failover Controller Workflow  

The key regions in the connection between the two controllers should be defined so as to build 

a stable and scalable system using standby techniques: a starting state that happens at first to 

coordinate the sequence of controller launch, a functional situation in which a devoted 

controller becomes the expert controller while the backup controller waits and observes by 

testing the relationship. Finally, failover denotes a slave controller attempting to substitute the 

main controller by pulling power from the former primary power supply.  

During the start controller stage, the, main and backup controllers each run their respective 

configuration files. In any controller-connected system, related procedures include how to 

handle incoming traffic, how to handle a new data routing switch or new event, and how to 

manage failures. By constantly delivering Hello messages to switches, the master controller is 

kept alive via an echo mechanism. This approach is also used by the slave controller to 

guarantee that although the original master was down, he is still alive and ready to become the 

new master. Both have a mechanism for determining if their status is comparable, master, or 

slave. Lastly, the slave contains an extra mechanism that regulates its movement while the 

master is unavailable, enabling the controller to operate.  

Based on the Open Flow protocol, the master controller arranges and analyzes the Open Flow 

switches in the functional specified direction, or the ordinary usual phase, and oversees the 

movement of data. Based on heartbeat signals, the backup controller detects malfunction in the 
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original controller failure mode. The standby controller takes over as primary controller after 

a timeout, determining the problem in accordance with certain legislation. The temporary 

master controller's primary responsibility is to restore network applications and services and to 

turn on the network interface, which allows network devices to be monitored. They suggest 

simplifying the SDN network even further by providing a data storage that exchanges data with 

the main and backup controllers via read only and repeating images inside a common network 

knowledge base.  

The standby controller will understand this based on the network operating system's 

capabilities. Several notifications or data should be transmitted or shared between the two 

controllers in a gateway to enable for a quick recovery from the collapse of the master controller 

activities between them. Such officers include:  

1) The master’s failure warning if it abnormally shuts down to ensure real basis 

coordination between the two controllers.  

2) Topological data, which comprises information such as the controller internet address, 

connectivity bandwidth, switch mac address, and host internet addresses, is one 

example of a network characteristic. 

3)  QOS details include the rate of loss of packets, transmitted packets, accepted packets, 

and delay.  

4) Heart rate alert to keep an eye on controller's condition. It is communicated from one 

controller to another on a regular basis to ensure that it is not a deed.  

G. Design of a Failover Controller 

We recommend the control platform design presented in figure 1.6 to eliminate single point 

mistakes in the control platform. 

Two controllers at two different locations include the master and slave controller with common 

data storage and a separate data network controller. We were using Mininet to digitally create 

a complicated network. Begin with the Python script for that controller, followed by the 

Mininet script for network creation. 

Pinging the several devices under the master controller allows us to test the connection. 

Through simply canceling the query, you can disconnect the master controller through 

recognizing the evolving position that makes the master controller to slave and vice versa. If 

you can successfully ping two machines beneath the new master controller's oversight, your 

network is in good health 
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Figure 1.6: Failover SDN Controller 

 

CONCLUSION 

The study of several topologies ranging from hierarchical and central to distributed, as well as 

our recommendation to utilize a failover approach show how difficult it is to rely solely on 

single design to establish a scalable and reliable SDN network. While failure ensures high 

reliability, making the SDN more dependable and deployable in the shortest amount of time 

possible, it is not the optimal situation for large scalability because it is always dependent on 

single controller. Hierarchical structure is a worthy opponent, providing a highly scalable 

network at the sacrifice of dependability because the base controller is only point of failure, 

scalability suffers. We suggest an approach for future research relies on a hybrid from a 

conceptual structure with core layer failure strategy of becoming one master one basic 

controller controlling the configuration of data delivery switches and a slave comparison for 

the other data delivery switches in order to achieve both reliability and scalability. If one of 

them failed at any moment, the other would take over as the primary master for the whole 

master network of data delivery switches. Because the two major switches are physically 

coupled, s spanning tree approach is required to break the cycle. 
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