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Abstract 

This study examines Bitcoin and Ethereum's dynamic interactions and causal relationships. Our research uses 

many advanced statistical and econometric methods. These include Augmented Dickey-Fuller (ADF) tests for 

stationarity, GARCH models for volatility, VAR models for multivariate analysis, Granger causality tests for 

predictive relationships, and co-integration analysis for long-term associations. Our study found significant 

skewness and kurtosis in both cryptocurrencies' return distributions, highlighting the need for specialized 

statistical methods. Bitcoin and Ethereum returns have a strong positive correlation, indicating their 

interdependence. The analysis of volatility spillover underscores their interdependence. Bitcoin exhibits volatility 

clustering and Ethereum's volatility is influenced by past shocks. Granger causality tests show a one-way 

relationship between Bitcoin and Ethereum. Co-integration analysis shows that the two entities have lasting 

relationships despite their instability. The above findings find use in risk management, portfolio diversification, 

trading strategies, and policy decisions in the ever-changing cryptocurrency market. Despite limitations, this study 

lays the groundwork for future cryptocurrency research. Risk managers, investors, academics, and policymakers 

can use these insights to improve their cryptocurrency strategies and decisions. 
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INTRODUCTION 

In the span of the last 13 years, cryptocurrencies have undergone a significant transformation, 

transitioning from a specialized technological concept aimed at facilitating peer-to-peer 

transactions to a financial asset category that is actively traded by a global user base comprising 

millions of individuals (Bommer, Milevoj, & Rana, 2023). Bitcoin, which was introduced in 

2009 by an anonymous developer using the pseudonym Satoshi Nakamoto (Nakamoto, 2008), 

continues to hold the position of the most significant cryptocurrency in terms of market 

capitalization. The value of Bitcoin experienced a substantial increase, starting at $1 in 

February 2011 and reaching its highest point at $69,000 in November 2021 (Auer R. , Cornelli, 

Doerr, Frost, & Gambacorta, 2023). At the time of writing this introduction, the price of Bitcoin 

was $29,808 in October 2023. The global ownership of cryptocurrencies experienced a 

significant increase, with an estimated figure of more than 220 million individuals possessing 

a cryptocurrency in June 2021, marking a substantial rise from the 5 million recorded in 2016 

(Auer R. , Cornelli, Doerr, Frost, & Gambacorta, 2023). The market for cryptocurrencies is 

growing rapidly to be a significant component of the global financial system (Gajardo, 

Kristjanpoller, & Minutolo, 2018). It is now hailed as a new asset class altogether (Corbet, 

Meegan, Larkin, Lucey, & Yarovaya, 2018). The market value of digital coins has increased 
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exponentially, increasing from about $17.7 billion at the beginning of 2017 to more than $700 

billion in the first months of 2018. The total market capitalization, as per a CoinMarketCap 

report on Forbes.com in March 2023 has crossed 1.2 trillion dollars (Hicks, 2023). 

Cryptocurrencies have emerged as a significant driver of economic transformation since its 

inception (Bulut, 2018). Bitcoin and the blockchain technology that underpins it possess the 

potential to revolutionize the conventional financial services sector. (Morkunas, Paschen, & 

Boon, 2019). Cryptocurrencies such as Bitcoin and Ethereum have witnessed an unparalleled 

surge in value since 2017, accompanied by significant volatility (Dangi, 2020). This 

phenomenon has garnered increasing attention in various domains, including public discourse, 

regulatory frameworks, and the portfolios of investors (Nemeczek & Weiss, 2023) (García-

Corral, Cordero-García, de Pablo-Valenciano, & Uribe-Toril, 2022). Recent cryptocurrencies 

like Ethereum, Ripple, Binance, dogecoin, and new memecoins are slowly chipping away at 

Bitcoin's share of the market value (Gerard, 2017). This shows that investors are taking a break 

from Bitcoin and looking into other cryptocurrencies. These alternatives, which generally use 

some of Bitcoin's ideas and technologies (like blockchain technology), have gotten a lot of 

attention and given cryptocurrency investors a lot of chances to make the most of their 

investments. This isn't surprising, since each of these other cryptocurrencies did better than 

Bitcoin in 2017, with returns ranging from 500% (Litecoin) to 36,000% (Ripple) compared to 

Bitcoin's 130% price increase (Ji, Bouri, Lau, & Roubaud, 2019). Even though 

cryptocurrencies are volatile by nature, middle-class investors and fund managers both see 

them as a class of assets that can be invested in and make good returns (Ji, Bouri, Lau, & 

Roubaud, 2019). Even though people are becoming more interested in putting money into 

alternative cryptocurrencies, it's interesting that we still don't know much about how the leading 

cryptocurrencies that have a market value of more than 10 billion USD and have high liquidity 

in terms of their returns and volatility work together. In fact, the short history of the 

cryptocurrency market has shown that the leading cryptocurrencies are not all the same when 

it comes to returns, volatility, and market value. It makes sense to think that Litecoin, which 

started in 2011 as a "fork" of Bitcoin, and Bitcoin itself are related (Gerard, 2017).  

In fact, Fabian Nemeczek and Daniel Weiss conducted an empirical analysis employing data 

sourced from a German personal finance management application, wherein users create 

connections between their bank accounts and investment portfolios (Nemeczek & Weiss, 

2023). Students, self-employed people, and young, male people are more likely to invest in 

crypto assets, according to the findings. Risk-takers and impatient people are more likely to 

invest. Most cryptocurrency owners have little financial advisory experience. Due to their high 

financial literacy, many people view it as too time-consuming and low-quality, opting for 

independent decision-making. After examining their consumption patterns, cryptocurrency 

investors spend more on travel, electronics, and food delivery than on healthcare (Nemeczek 

& Weiss, 2023). Currently, the fluctuating nature of cryptocurrency prices hinders their 

widespread adoption as a viable medium of exchange. Furthermore, cryptocurrencies are not 

utilized as a unit of account due to their inherent volatility. This volatility renders it impractical 

to establish a consistent price in a particular cryptocurrency or to employ cryptocurrencies as 

a benchmark for assessing the value of real economic transactions (Auer R. , Cornelli, Doerr, 
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Frost, & Gambacorta, 2023). Crypto investors, who consider research in cryptocurrencies 

excessively time-consuming (Nemeczek & Weiss, 2023) would benefit greatly from more 

research on how volatility, dynamic connections and integration work in cryptocurrency 

markets. This would help them come up with investment and trading strategies that use a mix 

of leading cryptocurrencies in their portfolios. So, the goal of this study is to look at how 

connected these two large cryptocurrencies are by analyzing the volatility spillover between 

them.  

The rest of the paper is structured as follows… 

The next section titled, ‘Research objectives’ will be followed by ‘Literature Review’ which 

will reveal the latest updates in the field. This will be followed by ‘Data, Data Preparation and 

Data Visual Representation’ which will discuss the data source and data characteristics. After 

that, in the section titled ‘Methodology/ Process’, we will explain the steps and tools employed 

to achieve the results. For sake of simplicity, we will first explain the tool/ metric employed, 

give its significance, discuss the results obtained and finish with the interpretation of those 

results. This will be followed by an “Overall Discussion” of all results, followed by 

“Conclusion”, “References” and “Appendix”. 

Research Objectives 

1. To assess and analyze the volatility patterns exhibited by the returns of Bitcoin and 

Ethereum for investigating the clustering behaviour and persistence of these patterns over 

time via employment of GARCH and EGARCH models. 

2. To examine the Granger causality relationship between the returns of Bitcoin and 

Ethereum to ascertain whether the historical returns of one cryptocurrency can serve as a 

predictor for the future returns of the other, while also identifying the direction of causality. 

3. To investigate the interconnectedness between Bitcoin and Ethereum through the 

utilization of the Volatility Spillover Index, Volatility Spillover Coefficients, and the 

covariance matrix to provide insights into the extent of shared volatility between the two 

cryptocurrencies. 

4. To investigate the existence of a sustained association, correlation and co-integration 

between the returns of Bitcoin and Ethereum via the application of the Spearman’s Rank 

Correlation Coefficient, Johansen Co-integration test, which will provide insights into 

potential shared underlying factors. 

To evaluate the risk management implications associated with volatility patterns and spillover 

effects in Bitcoin and Ethereum for elucidating strategies that investors and traders can employ 

to enhance risk management in their cryptocurrency portfolios. 

 

LITERATURE REVIEW 

Throughout the historical shift from barter-based economies to the adoption of monetary 

systems, individuals have endeavored to develop frameworks that facilitate logical methods of 

value exchange. The Greek philosopher Aristotle formulated four criteria (viz. durability, 
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portability, divisibility and possessing of intrinsic value) to determine the characteristics of 

"good money" in order to facilitate the comparability of goods and services (Wang M. , 2020). 

When applied to cryptocurrencies, we find that Aristotle’s two-thousand-year-old definition 

does not completely apply here, as only portability and divisibility apply to cryptocurrencies. 

In any case, cryptocurrencies have existed since before 2009 and continue to impact the realm 

of finance. A cryptocurrency refers to a form of digital currency that is safeguarded through 

the use of cryptographic means. In retrospect, individuals have been actively seeking 

alternative payment solutions for several decades throughout the course of history. During the 

1990s, the emergence of eCash, developed by DigiCash Inc, marked a significant milestone in 

the realm of digital currencies, bearing resemblance to contemporary cryptocurrencies. 

Nevertheless, it failed to withstand the burst of the 2000 Internet bubble (Martino, Wang, 

Bellavitis, & DaSilva, 2020). The potential of cryptocurrency lies in its ability to provide a 

novel form of currency that is constructed upon blockchain technology and substantiated 

through cryptographic evidence rather than reliance on trust. The problem of dependency on a 

third party when utilizing a non-cash payment method was effectively resolved. Thus, using 

blockchain protocols, it’s now possible to use cryptocurrencies to remove dependence on third 

parties, reduce costs, save time and make secure anonymous transactions (Deepika & Kaur, 

2017). 

Coming to Blockchain; the underlying technology which allows cryptocurrencies to do what 

they do, according to Narayanan et al (Narayanan, Bonneau, Felten, Miller, & Goldfeder, 

2016), blockchain can be defined as an ever-expanding collection of records known as blocks, 

which are interconnected and safeguarded through cryptographic techniques. Every block is 

comprised of several components, including a hash pointer, which serves as a reference to the 

previous block, a link to the previous block, a timestamp indicating when the block was created, 

and transaction data associated with the block. The blockchain is responsible for ensuring the 

authenticity of the coins associated with each cryptocurrency. Blockchains are inherently 

designed to possess resistance against any form of data modification. A distributed ledger, 

commonly referred to as blockchain, is a transparent and decentralized system that effectively 

and durably documents transactions between two entities (Iansiti & Lakhani, 2017). A 

decentralized network, known as a peer-to-peer network, is responsible for overseeing and 

managing the blockchain system. This network operates collectively following a set of rules 

and guidelines, referred to as a protocol, to verify and validate newly created blocks. The 

blockchain, in turn, serves as a distributed ledger, enabling secure and transparent record-

keeping (Chougule & Tulpule, 2021). Raval (year) highlights the inherent security of 

blockchains, emphasizing their status as a distributed computing framework characterized by 

a robust Byzantine fault tolerance mechanism. Furthermore, Raval underscores the successful 

attainment of decentralized consensus through the implementation of blockchain technology 

(Raval, 2016). Bitcoin (BTC) introduced by Satoshi Nakamoto (Nakamoto, 2008) represents 

the pioneering decentralized cryptocurrency, which was introduced in the year 2009 as open-

source software (Sagona-Stophel, 2016). They described Bitcoin as a form of digital currency 

that operates in a decentralized manner, allowing users to engage in direct transactions on the 

peer-to-peer bitcoin network. This currency system does not rely on a central bank or an 
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administrator, thereby eliminating the need for intermediaries. The verification of transactions 

is conducted by network nodes utilizing cryptographic techniques, and subsequently 

documented in a publicly accessible distributed ledger known as a blockchain. Bitcoins are 

generated through a process called mining, wherein individuals are rewarded for their 

computational efforts. These digital assets have the capability to be exchanged for various 

currencies, goods, and services (Velde, 2013). At present, it stands as the most widely adopted 

cryptocurrency (Auer R. , Cornelli, Doerr, Frost, & Gambacorta, 2023). 

Ethereum (ETH) is classified as an Altcoin, a term used to encompass various alternative 

cryptocurrencies that exist alongside Bitcoin, denoting digital assets of different types (Yang, 

2018). Additionally, it is a decentralized and open source blockchain that incorporates the 

capabilities of Smart Contract functionality, alongside its inherent native cryptocurrency. 

According to Bloomberg.com, Ethereum is widely recognized as the second-largest 

cryptocurrency in terms of market capitalization and market prices denominated in USD, 

following Bitcoin. The concept of Ethereum was introduced in 2013 by a programmer named 

Vitalik Buterin (Buterin, 2014). In 2014, the development of Ethereum was funded through a 

crowdfunding campaign. Subsequently, on July 30, 2015, the Ethereum network was launched, 

having pre-mined approximately 72 million coins (Tapscott & Tapscott, 2016). Since its 

inception, Ethereum has garnered significant attention in the realm of digital assets, achieving 

a record peak of $4,636.7 in November 2021. This growth is evidenced by its value surging 

from $11.41 in March 2016 to $1,814 in May 2022, as reported by Quandl.com. 

Cryptocurrency volatility is a major concern for all stakeholders. The occurrence of frequent 

fluctuations in cryptocurrency prices is a commonly observed phenomenon, which often 

perplexes individuals seeking to understand its underlying causes.  The volatility of 

cryptocurrency prices is influenced by a multitude of factors. The Volatility Index, also referred 

to as the CBOE Volatility Index, is employed for the computation of volatility in trading assets 

within traditional markets. Given the nascent nature of cryptocurrencies, a definitive 

characterization of their volatility remains elusive (Khan & Hakami, 2022). 

Li, X., Gan, K., & Zhou, Q. explain that a body of literature exists that examines 

cryptocurrencies, with a primary emphasis on the efficiency of the market, price dynamics, 

return distribution, and portfolio analysis (Li, Gan, & Zhou, 2023). In recent years, there has 

been an increasing focus on the interdependency structure and spillover effect of 

cryptocurrencies. This phenomenon can be categorized into two distinct branches. The initial 

branch of study focuses on examining the relationships and dynamics between cryptocurrencies 

and various other financial assets. In 2 studies conducted by Dyhrberg in 2016, it was 

determined that Bitcoin exhibits a hedging capacity comparable to that of gold as well as the 

US dollar (Dyhrberg, Hedging capabilities of bitcoin. Is it the virtual gold? , 2016) and 

(Dyhrberg, 2016). According to the study conducted by Chan et al., it was observed that Bitcoin 

demonstrates a significant ability to serve as an effective and robust hedge for major global 

stock indices (Chan, Le, & Wu, 2019). Similarly, Guesmi et al. discovered that short positions 

in the Bitcoin market can effectively mitigate investment risk across various financial assets 

(Guesmi, Saadi, Abid, & Ftiti, 2019). Nevertheless, the research conducted by Bouri et al. 

reveals that Bitcoin exhibits limited effectiveness as a hedging instrument (Bouri, Molnár, 
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Azzi, Roubaud, & Hagfors, 2017). According to the findings of Selmi et al., it has been 

observed that both Bitcoin and gold possess the potential to function as safe havens during 

periods of significant volatility in oil prices (Selmi, Mensi, Hammoudeh, & Bouoiyour, 2018). 

In a similar vein, the research conducted by Urquhart and Zhang reveals that Bitcoin serves as 

a secure investment option during times of heightened volatility in foreign exchange markets 

(Urquhart & Zhang, 2019). According to the findings of Ji et al., Bitcoin exhibits a high degree 

of isolation from other financial assets (Ji, Bouri, Gupta, & Roubaud, 2018). According to the 

study conducted by Wang et al., it was determined that USD-pegged stablecoins exhibit 

superior risk diversification properties in comparison to gold-pegged stablecoins within the 

realm of traditional cryptocurrencies (Wang, Ma, & Wu, 2020). 

The second branch of study focuses on analyzing the interconnectedness among various 

cryptocurrencies. Yi et al. use the VAR model to investigate volatility connectedness among 8 

cryptocurrencies and construct a volatility connectedness network with 52 cryptocurrencies 

(Yi, Xu, & Wang, 2018). In their study, Ji et al. investigate the phenomenon of asymmetric 

return and volatility connectedness among a selection of six cryptocurrencies. This 

investigation is conducted through the utilization of the Vector Autoregressive (VAR) model 

(Ji, Bouri, Lau, & Roubaud, 2019). In their study, Antonakakis et al. employ a VAR model that 

incorporates time-varying parametric factors (referred to as TVP-FAVAR) to investigate the 

interconnectedness of returns among nine cryptocurrencies. Additionally, they construct a 

market factor using data from 45 cryptocurrencies (Antonakakis, Chatziantoniou, & Gabauer, 

2019). In their study, Moratis utilizes the Bayesian Vector Autoregression (VAR) model to 

examine the spillover effects exhibited by the 30 most prominent cryptocurrencies (Moratis, 

2021). The VAR model is employed by Aslanidis et al. in their investigation of the 

interdependence of returns and volatility spillovers within a set of 17 cryptocurrencies 

(Aslanidis, Bariviera, & Perez-Laborda, 2021). In their study, Kumar et al. utilize the Vector 

Autoregressive (VAR) model to examine the interdependencies in terms of both time and 

frequency between the returns and volatilities of a set of ten cryptocurrencies (Kumar, Iqbal, 

Mitra, Kristoufek, & Bouri, 2022). Moreover, the studies conducted by Koutmos (Koutmos, 

2018) and Moratis (Moratis, 2021) reveal that Bitcoin plays a prominent role in generating 

spillover effects within the selected cryptocurrencies. In a study conducted by Katsiampa et al., 

it was discovered that there are reciprocal shock transmission effects observed between Bitcoin 

and Ethereum (Katsiampa, Corbet, & Lucey, 2019). Similarly, Xu et al. determined that Bitcoin 

and Ethereum serve as the primary recipients and emitters of systemic risk, respectively (Xu, 

Zhang, & Zhang, 2021). Slowly but gradually, the emphasis is increasing on examining the 

spillover effect amongst cryptocurrencies and other traditional or mainstream financial assets 

using either the VAR model (Corbet, Meegan, Larkin, Lucey, & Yarovaya, 2018) or its 

variations (Wang, Tang, Xie, & Chen, 2019) (Ghorbel & Jeribi, 2021) The crypto type of asset 

is a recently emerged and rapidly expanding category of assets. According to a recent report 

published by J.P. Morgan, it has been suggested that the price of Bitcoin has the potential to 

increase to a value exceeding $146,000 in the long run (Godbole, 2021). Furthermore, it is 

noteworthy that several merchants have begun to embrace the acceptance of cryptocurrency as 

a form of payment, exemplified by prominent entities such as Tesla and PayPal. There is a 
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noticeable increase in scholarly literature examining the factors that determine cryptocurrency 

prices, as demonstrated by the works of Bhambhwani, Delikouras, and Korniotis 

(Bhambhwani, Delikouras, & Korniotis, 2019). Additionally, some research has been 

conducted on portfolio choice in relation to cryptocurrencies, as exemplified by the work of 

Bonaparte (Bonaparte, Time horizon and cryptocurrency ownership: Is crypto not 

speculative?., 2022). However, there remains a dearth of attention given to the creation of novel 

cryptocurrency indicators that can assist researchers and the business community in making 

informed decisions pertaining to cryptocurrencies (Bonaparte, 2023). As we saw, most of the 

research focuses only on just one or few indicators of volatility and interconnectedness. Also, 

concentrated attention on just Bitcoin and Ethereum, 2 of the most popular and most traded 

cryptocurrencies in the world, and how they perform the dance of volatility interconnectedness 

is not explored at a high degree. This study hopes to remedy this research gap by employing 

an extensive battery of tests to investigate the Causality, Volatility Spillover, and Co-integration 

between Bitcoin and Ethereum exclusively. 

 

DATA, DATA PREPARATION & DATA VISUAL REPRESENTATION 

The 2 large cryptocurrencies chosen for this study are Bitcoin and Ethereum. Bitcoin and 

Ethereum are among the most notable and extensively exchanged digital currencies within the 

marketplace. Cryptocurrency ecosystem participants play crucial roles and exert a considerable 

influence on the market dynamics at large (Adhami, Giudici, & Martinazzi, 2018) (Afilipoaie 

& Shortis, 2015). Consequently, an examination of the volatility spillover phenomenon 

between Bitcoin and Ethereum can yield significant findings regarding the interrelationships 

and transmission of effects within the cryptocurrency domain. Coinmarketcap.com supplies 

the daily closing prices of Bitcoin, Ethereum, Ripple, Tether, Litecoin, and Stellar, which 

previous researchers (Poongodi, Vijayakumar, & Chilamkurti, 2020), (Basilico & Johnsen, 

2019), (Singh & Mittal, 2022) have found reliable. The daily price data for the 2 selected 

cryptocurrencies, Bitcoin and Ethereum, was taken from these sources. The temporal scope 

under consideration spans from January 1st, 2015, to December 31st, 2022. The process of data 

cleaning will be implemented through the utilization of Python code to address any potential 

issues such as data being absent, outliers, or errors. The utilization of Jupyter Notebook within 

the Anaconda Platform has been chosen for the aforementioned purpose. The downloaded data 

was saved in 2 separate .csv files (short for Comma Separated Values) named 

bitcoin_hist_data.csv & Ethereum_hist_data.csv which was then uploaded onto Jupyter 

Notebook. Both the files contained the following columns. 

1. Date- date on which the row data was recorded. 

2. Price- closing price of Bitcoin/ Ethereum. 

3. Open- opening price of Bitcoin/ Ethereum 

4. High- highest price of Bitcoin/ Ethereum for that date. 

5. Low- lowest price of Bitcoin/ Ethereum for that date. 

6. Vol.- Volume for Bitcoin/ Ethereum 
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7. Change%- Percentage change in price for that date 

There were 2921 entries/ rows for Bitcoin data and 2487 entries/ rows for Ethereum data. The 

difference is because Ethereum was launched officially on July 30, 2015, and regular data 

collection was available from March 10, 2016. The 2 files were then combined into a single 

dataframe for ease of operations. For this “inner join” operation was employed using date as 

index. So, we were left with 2487 rows as additional dates (from bitcoin data) before March 

10, 2016, were ignored. So, now our dataframe had 2487 rows and 13 columns (date column 

was common). 

This new dataframe was checked for missing data. None were found and thus the next step of 

calculation of daily returns for Bitcoin and Ethereum using their closing prices was undertaken. 

The method utilized for this was the “.pct_change” method in python. The technique computes 

the percentage variation between the present and antecedent elements in either a Series or 

DataFrame. Daily returns in cryptocurrency data refer to the percentage variation in the price 

of the digital currency between two consecutive days. The computation is executed through the 

division of the disparity between the present day's value and the value of the day prior by the 

value of the day prior.  

Mathematical expression. 

Daily Return = (Pricet - Pricet-1) / Pricet-1 

where: 

The variable Pricet represents the value of the asset in question at a specific point in time, 

namely the present day denoted as "t". 

The variable Pricet-1 represents the value of the asset at the time t-1, which corresponds to the 

preceding day. 

Using the above, 2 new columns titled ‘Bitcoin_Returns’ & ‘Ethereum_Returns’ were 

calculated and added to the dataframe. These columns were populated for each date. Now the 

data is ready for further processing. 

Consider some basic statistics of the data: 

 

It is clear that the mean returns for bitcoin and Ethereum are both negative, but they are more 

so for Bitcoin as compared to Ethereum. Also, Mean realized volatility of Ethereum is more 
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than that of Bitcoin, painting a picture that bitcoin is generally more stable than Ethereum. The 

minimum and maximum values also present a similar picture. 

Let’s take a look at the visual representation of data: 

 

 

Comparison of closing prices of both cryptocurrencies over time: 
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Bitcoin Returns: 

 

Ethereum Returns: 
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Returns of both currencies over time: 

 

Bitcoin Volatility: 

 

Ethereum Volatility: 
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Bitcoin and Ethereum Volatility: 

 

METHODOLOGY/ PROCESS: 

After processing was done, then, the data was checked for stationarity.  

The requirement to assess stationarity arises from multiple considerations: 

1. The concept of stationarity holds significant importance in various statistical techniques 

and time series models as it serves as a fundamental assumption. Autoregressive Integrated 

Moving Average (ARIMA) models necessitate the data to be stationary to ensure precise 

forecasting and parameter estimation (Metes, 2005). 

2. Non-stationary time series frequently display trends and seasonality, which may introduce 

analytical biases. Through the identification and elimination of such trends, it is possible 

to direct attention towards the fundamental stationary constituents, thereby enhancing the 

quality of discernment and prognostication (Sjö, 2008). 

3. The notion of mean reversion serves as the foundation for numerous economic and 

financial theories, positing that a given series has a tendency to return to its average value 

over a period of time. The condition of stationarity is a necessary requirement for the 

phenomenon of mean reversion, thereby underscoring the significance of conducting 

stationarity tests on financial and economic data (Sjö, 2008). 

For this purpose, the ADF test was used. Time series stationarity is tested using the Augmented 

Dickey-Fuller (ADF) test (Dickey & Fuller, 1979), a popular statistical test. In time series 

analysis, stationarity implies that statistical characteristics like mean, variance, and 

autocovariance remain constant. The Augmented Dickey-Fuller (ADF) test determines time 

series stationarity. The test is designed to cater to the requirement of testing for stationarity by 

assessing the presence of a unit root in the given time series (Dickey & Fuller, 1979). The 

presence of a unit root in a series implies the existence of a stochastic trend, which in turn leads 

to the absence of stationarity. The ADF test is utilized to ascertain whether the process of 

differencing the series, with the aim of eliminating the trend, can render it stationary. 

In this case, the hypotheses are as follows. 
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H0Bitcoin- Stationarity is absent in the Bitcoin Returns time series data. 

H1Bitcoin - Stationarity is present in the Bitcoin Returns time series data. 

H0Ethereum- Stationarity is absent in the Ethereum Returns time series data. 

H1Ethereum- Stationarity is present in the Ethereum Returns time series data. 

The results of the ADF test for our dataframe are as follows. 

 

The interpretation for the above results is as follows. 

This study's ADF tests show Bitcoin Returns' stationarity. H1Bitcoin's stationarity alternative 

hypothesis is supported by the large negative ADF statistic of -34.55821780098068. A negative 

value contradicts the non-stationarity null hypothesis (H0Bitcoin), suggesting Bitcoin Returns 

are stationary. This conclusion is supported by 0.0 p-value. A negative ADF statistic is unlikely 

under non-stationarity due to the low p-value. This confirms dataset stationarity. That Bitcoin 

Returns is stable and predictable over time is important for time series analysis. This supports 

accurate statistical modeling and interpretations. The Augmented Dickey-Fuller (ADF) test 

used in this study suggests Ethereum Returns are stationary. Bitcoin Returns matches the 

negative ADF statistic of -34.39558533034795. This supports Ethereum's return series' 

stationarity (H1Ethereum replaces H0Ethereum). ADF size disproves non-stationarity. This 

strongly suggests Ethereum returns are stable. ADF's 0.0 p-value indicates statistical 

significance. The assumption of non-stationarity makes a negative ADF statistic unlikely.   

Then the data was tested for normality using the Jarque- Bera test (Jarque & Bera, 1980). The 

Jarque-Bera test is a statistical tool utilized to evaluate the conformity of a given sample to a 

normal distribution. The analysis assesses the degree of asymmetry and peakedness of the 

dataset to determine deviations from the normal distribution. The JB test holds importance due 

to its capacity to furnish a rigorous statistical gauge of deviations from the normal distribution. 

The assessment derives a test statistic by utilizing measures of skewness and kurtosis, which is 

subsequently juxtaposed with a chi-squared distribution featuring two degrees of freedom. The 

attainment of a noteworthy p-value from the test implies proof against the null hypothesis of 

normality, thereby indicating that the data is improbable to conform to a normal distribution 

(Rana, Eshita, & Al Mamun, 2021). 

In this case, The Hypotheses are as follows. 

H0Bitcoin- Normality is present in the Bitcoin Returns time series data. 

H1Bitcoin - Normality is absent in the Bitcoin Returns time series data. 

H0Ethereum- Normality is present in the Ethereum Returns time series data. 
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H1Ethereum- Normality is absent in the Ethereum Returns time series data. 

The results of the Jarque-Bera test for our dataframe are as follows. 

 

 

 

The interpretation of the above results is as follows: 

1. Jarque-Bera test for Bitcoin Returns 

a. The JB statistic for Bitcoin returns is 80028.33520007596. Data deviates from a normal 

distribution as measured by the JB statistic. A large JB statistic indicates a significant 

deviation from the normal distribution. 

b. Jarque-Bera test significance is 0.0. If the data follows a normal distribution, the p-value 

indicates the likelihood of seeing the JB statistic. In this case, the p-value is extremely 

low, indicating that a JB statistic of such magnitude is unlikely under the normality 

assumption.  

c. We reject the null hypothesis (H0Bitcoin) of normality for Bitcoin Returns in favor of 

alternative hypotheses (H1Bitcoin). 

2. Jarque-Bera test for Ethereum Returns 

a. Ethereum Returns' JB statistic: 39567.637526470135. Similar to Bitcoin returns, the JB 

statistic is large, indicating a significant deviation from the normal distribution. 

b. The Jarque-Bera test showed a p-value of 0.0 for Ethereum Returns. The extremely small 

p-value of the JB statistic indicates that such a statistic is unlikely under normality.  

c. We can reject the null hypothesis (H0Ethereum) of normality for Ethereum Returns in favor 

of alternative hypotheses (H1Ethereum). 

In conclusion, the Jarque-Bera test shows that Bitcoin and Ethereum returns are not normally 

distributed. Asset returns may have skewness or kurtosis compared to a normal distribution. 

Normality-assuming statistical methods must account for deviation. Alternative modeling or 

conversions must be investigated for non-normal data. Skewness and kurtosis will be 

examined. 

Consider the information about the skewness and kurtosis of the data. 
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Skewness and kurtosis are statistical parameters that offer valuable insights into the 

configuration and dispersion of a given dataset (Groeneveld & Meeden, 1984). 

Skewness is a statistical measure used to quantify the degree of asymmetry present in each 

distribution. A positive value of skewness denotes a distribution with an extended right tail, 

whereas a negative value of skewness denotes a longer left tail. 

 

Drawing from the provided skewness values: 

 The skewness value of Bitcoin_Close is 1.317055, which suggests that the distribution is 

moderately skewed towards the right. 

 The Ethereum_Close variable exhibits a skewness value of 1.559046, which suggests a 

distribution that is moderately skewed to the right. 

 The skewness of Bitcoin_Returns is 1.924417, indicating a significant right-skewness. 

 The variable Ethereum_Returns exhibits a skewness value of 1.629439, which suggests 

that its distribution is moderately skewed to the right. 

 The skewness of Bitcoin_Realized_Volatility is 2.536171, which suggests a distribution 

that is notably skewed to the right. 

 The skewness of Ethereum_Realized_Volatility is 2.631018, which suggests a distribution 

that is notably skewed to the right. 

Bitcoin and Ethereum variables always have right-skewness. Moderate skewness in Bitcoin 

and Ethereum's closing price distributions suggests longer right tails and occasional high 

prices. Right-skewness suggests both cryptocurrencies favor outliers or extreme positive 

returns. This information is important for risk assessments and investment decisions because it 

shows large gains and high fluctuations in asset values. Also, Bitcoin and Ethereum volatility 

distributions are skewed. Extremely high positive volatility outliers show that digital currencies 

are dynamic. Understanding market dynamics requires understanding these variables' 

skewness. Policymakers and investors need this knowledge to navigate cryptocurrency. 

Kurtosis is a statistical measure that quantifies the degree of concentration of data in the tails 

of a distribution. A greater kurtosis value signifies a greater degree of concentration of data in 

the tails and a possible increase in the heaviness of the tails in comparison to a normal 

distribution. 

Drawing from the provided kurtosis values: 
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 The kurtosis value of Bitcoin_Close is 0.542940, indicating a distribution that is relatively 

light-tailed. 

 The kurtosis value of Ethereum_Close is 1.392322, suggesting a distribution with a 

slightly heavier tail. 

 The kurtosis value of Bitcoin_Returns is 27.329413, which suggests a distribution with 

heavy tails and the existence of outliers. 

 The kurtosis value of Ethereum_Returns is 19.146753, which suggests that the distribution 

of returns is characterized by heavy tails and the possible existence of outliers. 

 The kurtosis value of 14.595053 for Bitcoin_Realized_Volatility suggests that the 

distribution is moderately heavy-tailed. 

 The Ethereum_Realized_Volatility exhibits a kurtosis value of 12.447430, which suggests 

a distribution that is moderately heavy-tailed. 

Kurtosis shows cryptocurrency market dynamics variables. Bitcoin closing prices have kurtosis 

of 0.542940, indicating low tail heaviness and few extreme values. The kurtosis of Ethereum 

closing prices is 1.392322, indicating a heavier tails distribution. This suggests a slightly higher 

extreme price event probability. However, Bitcoin and Ethereum's investment performance is 

most intriguing. Outliers and tail clustering are indicated by kurtosis values of 27.329413 and 

19.146753. This suggests that cryptocurrency returns may vary greatly, requiring risk 

management. Investors should also note Bitcoin and Ethereum's moderately heavy-tailed 

volatilities. Kurtosis is 14.595053 and 12.447430 for these distributions. Market participants 

must prepare for sudden and significant changes. The cryptocurrency market is volatile, 

requiring thorough risk assessment and flexible investment strategies. 

Next comes the test of heteroskedasticity. We used Ljung-Box Q test (Verbeek, 2017) to test 

for Autocorrelation and corroborated the same with the ARCH-LM test (Engle, 1982).  

The Ljung-Box Q test is used to determine whether autocorrelation is present in a time series. 

The correlation between a variable and its lagged values is known as autocorrelation. The test 

determines whether a model still contains any significant residual autocorrelation after taking 

into account the anticipated randomness. The test assists in determining whether the observed 

autocorrelation is statistically significant by examining the Q-statistic and related p-values. 

Commonly, time series models are checked for accuracy using the Ljung-Box Q test, which 

also looks for any missed patterns or serial dependencies (Verbeek, 2017)s. 

The ARCH-LM test, on the other hand, focuses on identifying conditional heteroskedasticity 

in a time series, specifically the presence of ARCH effects. The volatility clustering, or ARCH 

effect, is the tendency for large or small returns to be followed by similarly sized returns. The 

ARCH-LM test determines whether a model's squared residuals show meaningful 

autocorrelation. To ascertain whether the ARCH effects are statistically significant, it measures 

the test statistic and associated p-value. The test helps capture and model time-varying 

volatility, which is essential for risk management and asset pricing in financial analysis (Engle, 

1982). 
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In time series analysis, both tests have significant functions. The Ljung-Box Q test aids in 

locating any residual autocorrelation that might point to poor modelling or misspecification. It 

ensures that the model accurately depicts the data's underlying temporal structure. The ARCH-

LM test, on the other hand, offers information about the presence of conditional 

heteroskedasticity, which is crucial for modelling volatility and risk estimation. It helps 

increase the precision of volatility models and deepen our understanding of the dynamics of 

financial markets by identifying ARCH effects. They make it possible for analysts and 

researchers to evaluate the presence of conditional heteroskedasticity and autocorrelation, 

respectively. By performing these tests, one can enhance risk management tactics, model 

specifications, and gain a deeper understanding of the characteristics of financial and economic 

data. 

 

 

Our received Ljung-Box Q-test statistics are as follows: 

 

Interpretation of Ljung-Box Q-test results: 

The Ljung-Box Q-test detects autocorrelation in time series residuals. The test assumes no 

residual autocorrelation. We reject the null hypothesis and find residual autocorrelation if the 

p-value is less than a significance level (e.g., 0.05). 

Bitcoin return Q-statistics are 5.16780293 and 0.0230093. Bitcoin returns show autocorrelation 

since the p-value is below the significance level. This suggests that residuals are dependent or 

serially correlated, indicating that past Bitcoin returns can predict future values. 

Q-statistic 5.57003087, p-value 0.01827044, Ethereum returns. Like Bitcoin returns, Ethereum 

returns show autocorrelation with a p-value below the significance level. This suggests that 

past Ethereum returns can predict future values. 

The Ljung-Box Q-test shows autocorrelation in Bitcoin and Ethereum returns. This suggests 

that these cryptocurrencies' returns are not completely independent and have a pattern. 

Our received ARCH-LM statistics are as follows: 

 

Interpretation of the ARCH-LM test results: 
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The ARCH-LM test shows heteroskedasticity in Bitcoin returns. The test statistic of 7.4748 

and p-value of 0.0063 indicate that Bitcoin returns are significantly volatile. Bitcoin returns are 

heteroskedastic. The test result suggests that Bitcoin volatility is clustered. This means that 

Bitcoin price changes are not uniform and exhibit volatility clustering, where periods of high 

volatility are followed by periods of high volatility and vice versa. Bitcoin return 

heteroskedasticity can affect risk management, portfolio allocation, and trading strategies. It 

implies that Bitcoin risk fluctuates, so investors and traders must take volatility into account 

when making decisions. It may also indicate market dynamics that affect Bitcoin return 

volatility. The ARCH-LM test shows heteroskedasticity in Bitcoin returns, emphasizing the 

importance of volatility patterns and risk management. Ethereum returns show 

heteroskedasticity according to ARCH-LM. Ethereum has a test statistic of 21.9322 and a very 

small p-value of 2.8245e-06. This suggests Ethereum returns are highly volatile. 

Heteroskedasticity in Ethereum returns means returns vary over time. The test shows that 

Ethereum return volatility clusters. Ethereum's high volatility tends to be followed by other 

high volatility and vice versa. Heteroskedasticity affects Ethereum trading, risk management, 

and portfolio allocation. It emphasizes the importance of considering volatility when investing. 

It also implies that market dynamics affect Ethereum return volatility. 

The ARCH-LM test for Ethereum returns shows heteroskedasticity, emphasizing the need to 

understand and manage Ethereum market volatility. Although, we must add that the 

heteroskedasticity is more strongly visible in Ethereum as compared to Bitcoin. It could be 

because Bitcoin, as a cryptocurrency, is more matured as compared to Ethereum. The volatility 

profile of cryptocurrencies does keep changing over time. In any case, this is grounds for 

further research as it is beyond the scope of this paper.After determining the stationarity, 

normality and heteroskedasticity, we will now employ 2 GARCH family models onto our data. 

The 2 GARCH family models are: 

1) GARCH 

2) E-GARCH 

As usual, we will first begin with the purpose and significance of each model, followed by the 

results and their interpretation. 

1) GARCH 

Purpose and significance: 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model (Bollerslev, 

1986) is a popular econometric model that accounts for heteroskedasticity, or time series data 

volatility. GARCH models model volatility dynamics over time, unlike linear regression 

models. It helps assess volatility clustering, leverage effects, and shock persistence in financial 

and economic data. The GARCH model quantifies risk and future observation uncertainty by 

modeling data conditional variance. Finance, economics, and risk management use it. This is 

used in portfolio optimization, option pricing, risk assessment, volatility forecasting, and value-

at-risk calculations. Students and professionals can better assess risk and return by using the 
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GARCH model in financial and economic analysis. Overall, the GARCH model improves risk 

management, decision-making, and financial analysis by understanding and formulating data 

volatility over time. The subject's widespread use and varied applications show its importance 

in academia and industry. 

GARCH (1,1) model results: 

Results for GARCH (1,1) model implemented on Bitcoin data. 

 

Interpretation: 

The Bitcoin dataset GARCH model analysis reveals estimated coefficients and statistical 

significance. This analysis interprets the results and discusses Bitcoin's volatility dynamics. 

1. The coefficient for omega (ω) is estimated at 1.6653e-04. The baseline or long-term average 

volatility of Bitcoin returns may not affect volatility dynamics, as the coefficient's p-value 

(0.340) is insignificant. Thus, Bitcoin volatility patterns are not explained by the constant 

term variable omega. 

2. The estimated alpha (α) coefficient is 0.2000. Estimated coefficient p-value (9.471e-05) is 

statistically significant due to its small magnitude. The squared residuals from previous 

periods, which represent prior disturbances, affect Bitcoin's volatility. The positive alpha 

coefficient suggests that Bitcoin return volatility clusters, with high volatility periods 

followed by high volatility periods. 

3. The beta (β) coefficient is estimated at 0.7000, with a p-value of 8.026e-06 indicating 

statistical significance. The above suggests that Bitcoin's lagged conditional variance, which 

measures its past instability, affects its current volatility. A positively oriented beta 

coefficient indicates leverage effect, where high volatility is followed by high volatility and 

vice versa. 

Results for GARCH (1,1) model implemented on Ethereum data. 
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Interpretation: 

The findings of the GARCH model analysis on Ethereum data offer valuable insights into the 

estimated coefficients and their statistical significance. 

1. The coefficient for omega (ω) is estimated to be 3.2958e-04. At 5% significance, the 

analysis's p-value (0.005835) is significant. The baseline or long-term average volatility 

of Ethereum returns appears to affect volatility dynamics. Ethereum returns' baseline 

volatility affects its volatility dynamics, as shown by a positive omega coefficient. 

2. The estimated alpha (α) coefficient is 0.2388. The statistical test p-value is 4.617e-04, 

indicating statistical significance. The squared residuals from previous periods, which 

represent past shocks, appear to influence Ethereum volatility. Ethereum's volatility 

clusters, with consecutive periods of high volatility, according to its positive alpha 

coefficient. 

3. The beta coefficient is estimated at 0.6845, with a p-value of 1.076e-18 indicating 

statistical significance. The above suggests that Ethereum's lagged conditional variance, 

which measures its volatility in the past, affects its current volatility. A positive beta 

coefficient indicates a leverage effect, where periods of high volatility are followed by 

similarly high volatility. 

4. The GARCH model analysis of Ethereum aligns with current knowledge of its volatility 

dynamics. The nonzero omega coefficient indicates a baseline volatility level, which 

matches Ethereum's cryptocurrency and blockchain platform volatility. Ethereum's alpha 

coefficient suggests clustering, a common feature of highly volatile assets like 

cryptocurrencies. The large beta coefficient confirms a leverage effect, where previous 

volatility affects subsequent volatility. 

2) EGARCH 

Purpose and significance: 

Asymmetry is added to volatility dynamics in the EGARCH model, a GARCH variant. 

Asymmetric volatility response to shocks in financial time series data is modeled in this study. 

The EGARCH model addresses volatility clustering and leverage effects in financial markets 

(Sen & Sarkar, 1981). When high volatility is followed by low volatility, volatility clustering 

occurs. Leverage effects affect volatility's response to up and down shocks. The EGARCH 

model simplifies leverage effects' magnitude and significance by directly interpreting 

coefficients in terms of conditional volatility's logarithmic transformation. By capturing how 

positive and negative shocks affect future volatility, the EGARCH model accurately depicts 

financial time series dynamics. The EGARCH model captures volatility's asymmetry, which is 

crucial for risk management and option pricing. The essential financial risk management 

computations Value-at-Risk (VaR) and Expected Shortfall (ES) are improved by this method. 

The EGARCH model addresses option price volatility skew or smile. Markets expect volatility 

asymmetry. Last, the EGARCH model models asymmetric volatility dynamics, including 

leverage and volatility clustering. Risk management and option pricing applications benefit 
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from this more complete and accurate financial time series data representation. Asymmetry in 

the EGARCH model improves volatility prediction, financial market risk assessment, and 

decision-making. 

EGARCH (1,1) model results: 

Results for EGARCH (1,1) model implemented on Bitcoin data 

 

Interpretation: 

 The utilization of the EGARCH (Exponential Generalized Autoregressive Conditional 

Heteroskedasticity) model on Bitcoin data has yielded significant findings regarding the 

volatility dynamics of Bitcoin.  

 The coefficient "omega" (-0.3751) represents the EGARCH model's intercept term. The 

statement implies a consistent element in the conditional variance equation. In this case, 

the negative value indicates statistically significant Bitcoin return volatility. 

 Historical squared residuals, which represent volatility shocks, affect the present 

conditional variance through the parameter "alpha [1]" at 0.3645. A statistically significant 

positive value indicates that positive volatility shocks affect future volatility, clustering 

volatility. This is consistent with Bitcoin returns, which often show periods of high 

volatility followed by further high volatility.  

 The coefficient "beta [1]" with a value of 0.9380 represents the previous conditional 

variance's effect on the present variance. The statement quantifies volatility's persistence 

and responsiveness to its historical values. The high and statistically significant value 

suggests volatility clustering because previous volatility levels positively affect current 

volatility.  

Results for EGARCH (1,1) model implemented on Ethereum data. 



  
  
 
 

DOI: 10.5281/zenodo.10454262 

1310 | V 1 8 . I 1 2  

 

Interpretation: 

 The utilization of the EGARCH (Exponential Generalized Autoregressive Conditional 

Heteroskedasticity) model on Ethereum data has yielded outcomes that offer valuable 

perspectives on the volatility dynamics of Ethereum.  

 The coefficient "omega" (-0.6110) represents the EGARCH model's intercept term. The 

statement implies a consistent conditional variance equation element. In this case, a negative 

value indicates statistically significant Ethereum return volatility.  

 The parameter "alpha [1]" (0.3935) measures how previous squared residuals, which 

represent unexpected volatility changes, affect the current conditional variance. A 

statistically significant positive value indicates that positive volatility shocks persist in 

affecting future volatility, producing volatility clustering. This matches Ethereum returns, 

which show periods of high volatility followed by periods of rising volatility.  

 The previous conditional variance influences the present conditional variance through the 

coefficient "beta [1]" at 0.8911. The statement indicates long-term volatility and its 

reactivity to past values. The high and statistically significant value suggests volatility 

clustering due to a strong positive relationship between past and present volatility.  

After studying Bitcoin and Ethereum volatility dynamics with GARCH & EGARCH, we 

analyze volatility spillover. To do this, a VAR model was built. The Vector Autoregression 

(VAR) model (Zivot & Wang, 2006) enables the evaluation of the dynamic interdependence 

between the returns of Bitcoin and Ethereum. Coefficient estimation and significance analysis 

can determine if volatility shocks in one cryptocurrency affect another's volatility. This analysis 

helps understand Bitcoin-Ethereum volatility spillovers' magnitude and direction. It reveals 

their volatility dynamics' interrelationships and plausible interdependencies. 

Results of the Vector Autoregression Model: 
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Interpretation of the results: 

 The utilization of the VAR model for the purpose of analyzing volatility spillover between 

Bitcoin and Ethereum has yielded outcomes that offer valuable perspectives on the 

interconnection between the two digital currencies. 

 The present study finds no statistically significant impact of the lagged values of Bitcoin 

and Ethereum returns on current Bitcoin returns with regard to Bitcoin returns. The 

regression analysis indicates a marginal adverse impact on Bitcoin returns from lagged 

Ethereum returns, albeit lacking statistical significance. This suggests that the present 

returns of Bitcoin are not significantly impacted by the past returns of Ethereum. 

 Conversely, with regards to Ethereum yields, the delayed Bitcoin yields exhibit a 

noteworthy adverse influence, implying a transfer of volatility from Bitcoin to Ethereum. 

An increase of one unit in the lagged Bitcoin returns results in a reduction of present 

Ethereum returns. The findings indicate that the volatility of Bitcoin exerts a significant 

impact on the volatility of Ethereum, and fluctuations in the prices of Bitcoin may 

plausibly affect the prices of Ethereum. 

 The correlation matrix of the residuals reveals a positive correlation between the 

unexplained variations, or residuals, of the returns of Bitcoin and Ethereum. The 

aforementioned statement implies the presence of a certain level of co-movement or shared 

volatility factors between the two aforementioned cryptocurrencies. 

Next, Variance Decomposition Analysis was performed using the Impulse Response Function 

(IRF) on the VAR model results (Iorngurum & Nwaobi, 2021). The Impulse Response Function 

(IRF) quantifies the impact of exogenous perturbations or unexpected changes in one variable 

on the response of other variables in the model over a specified period. The volatility spillover 

effects between Bitcoin and Ethereum can be analyzed by plotting the Impulse Response 

Function (IRF), which provides valuable insights. The plot shows how each variable affects 

the predicted volatility of the others. The provided information shows how much each 

variable's volatility is accounted for by its own innovations compared to the other variables in 

the model. The above data helps analyze volatility spillover by determining how much Bitcoin 

or Ethereum perturbations affect the alternative cryptocurrency. The above statement sheds 

light on the two assets' interdependence and volatility transmission. Plot analysis can reveal the 
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dynamic response of variables to external stimuli and identify periods when one variable's 

volatility affects another. This study helps understand Bitcoin and Ethereum volatility spillover 

mechanisms, guiding investment, risk management, and portfolio diversification strategies. 

Results: 

 

Our previous analysis matches these results. IRA followed Variance Decomposition. Impulse 

Response Analysis reveals dynamic interrelationships and temporal disturbances for volatility 

spillover analysis. A shock in one variable can affect other variables' future values, revealing 

volatility spillover effects. It measures shock-induced variable reactions and their duration. 

Variable volatility spillover effects can be measured in magnitude and duration.  

Dynamically understanding volatility spillovers makes it useful. The statement discusses shock 

propagation and system variable volatility. Impulse responses show which variables are most 

affected by exogenous disturbances and track volatility spillovers.  

It also evaluates volatility spillover policy and risk management. Shock simulations and 

analysis help policymakers and market participants manage volatility spillover. It measures 

variable dynamics and transmission mechanisms to understand financial market volatility's 

interdependencies and contagion effects. 

IRA results: 
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This was followed by Granger Causality Test to check if there is a statistically significant 

causality relationship between Bitcoin and Ethereum. It determines whether one time series 

variable predicts or causes another. This method evaluates causal relationships in time series. 

The test determines how well past values of a variable predict future values of another (Konya, 

2004). It shows variable sequences and causal relationships, making it important. Through 

statistical analysis of test results, researchers can determine significance and whether a variable 

can predict another, proving a causal relationship. The above examination is widely used in 

economics, finance, social sciences, and engineering to examine causal relationships. It has 

many uses. This approach helps researchers analyze relationship direction and strength, 

evaluate predictive models, validate economic theories, and guide decision-making. Granger 

Causality analysis in finance can assess the predictive power of past asset returns on future 

asset returns. Portfolio allocation and risk management strategies can benefit from this. 

 

Granger Causality Test results: 

 

 

 

Granger Causality Test Results Interpretation: 

Granger Causality tests show whether Bitcoin Returns and Ethereum Returns are causally 
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related. 

The null hypothesis (H0) in the hypothesis test for Granger causality between Bitcoin Returns 

and Ethereum Returns states that there is no causal relationship. At 5% significance, the null 

hypothesis is rejected because the test statistic of 12.26 exceeds the critical value of 3.843. 

According to the Granger causality test, Bitcoin returns affect Ethereum returns. Historical 

Bitcoin Returns may predict Ethereum Returns. 

Ethereum Returns and Bitcoin Returns have different Granger causality results. Ethereum 

Returns do not cause Bitcoin Returns, according to H0. The test statistic falls below the 3.843 

critical value at 5% significance. Null hypothesis cannot be rejected, suggesting there is 

insufficient evidence to claim Ethereum Returns Granger-causes Bitcoin Returns. In other 

words, past Ethereum Returns values seem to have little impact on future Bitcoin Returns. 

Bitcoin Returns affect Ethereum Returns, but Ethereum Returns do not affect Bitcoin Returns. 

Granger causality refers to statistical predictability and information content, not a causal 

mechanism. Next, we perform the Johansen Co-integration test (Johansen, 1988) on our data. 

The Johansen Co-integration test is essential for volatility spillover analysis because it assesses 

the long-term relationship between time series variables, especially volatility dynamics. 

Volatility spillover occurs when sudden and significant volatility fluctuations spread to another 

variable (Konya, 2004).  

Johansen Co-integration tests the equilibrium of variables over time. This test determines if 

multiple variables move together in volatility in volatility spillover analysis. If the test is 

positive, the variables are co-integrated over time, meaning disturbances in one may affect 

others' volatility. This suggests volatility spillover effects, where one asset's volatility affects 

another's. Testing for co-integration reveals volatility interdependencies and transmission 

mechanisms across variables. This data is essential for portfolio management, risk assessment, 

and financial market hedging. 

 

Johansen Co-integration test results: 

 

Johansen Co-integration test results Interpretation: 

Test results showed eigenvalues [0.01128209, 0.00223186]. The eigenvalues reveal the 

system's co-integrating vector count. Dual eigenvalues indicate two co-integrating 

relationships between variables. Critical values come from the matrix [[13.4294, 15.4943, 

19.9349], [2.7055, 3.8415, 6.6349]]. Critical values are essential for assessing test results' 

statistical significance. By comparing eigenvalues and critical values, co-integration can be 

confirmed and its significance assessed. Analysis of volatility spillover variables revealed two 

co-integrating relationships. In long-term balance, perturbations in one variable may affect the 

instability of others. The statement implies volatility spillover, where one variable's volatility 
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affects others. The Johansen Co-integration test is essential for volatility spillover dynamics 

analysis and risk management strategy development. Volatility interdependencies and 

transmission mechanisms teach portfolio diversification, hedging, and risk assessment. 

Volatility Spillover Calculation: 

This was followed by an attempt to quantify the volatility spillover using the volatility spillover 

index and volatility spillover coefficient. 

Volatility Spillover Index: 

The Volatility Spillover Index measures volatility transmission between two variables. The 

above statement measures volatility transmission between variables. Zero means no volatility 

spillover or transmission, and 1 means full volatility spillover or transmission. 

Formula: 

Volatility Spillover Index=
(𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑓 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

(𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑑𝑒𝑙)
 

Volatility Spillover Coefficient: 

The Volatility Spillover Coefficient measures how much one variable affects another, 

indicating its strength. The proportion of volatility shocks caused by previous values of another 

variable that affect one variable is measured above. Volatility Spillover Coefficient ranges from 

0 to positive infinity. Zero indicates no spillover effect, while higher values indicate a stronger 

spillover effect from X to Y. 

Formula: 

Volatility Spillover Coefficient=
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋𝑡−1,𝑌𝑡)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋𝑡−1)
 

Here, 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋𝑡−1, 𝑌𝑡) denotes the covariation existing between the past observation of 

variable X (𝑋𝑡−1) and the present observation of variable Y (𝑌𝑡). 

Results: 

 

Interpretation: 

The findings of the analysis on volatility spillover reveal a Volatility Spillover Index of 

0.9644865109787503 and Volatility Spillover Coefficients of 0.6906321663039696. 

The Volatility Spillover Index measures volatility transmission or spillover between variables. 

This index value of 0.9644865109787503 indicates significant volatility spillover, meaning 

changes in one variable affect the volatility of the other. They indicate volatility spillover 

intensity. The coefficient value of 0.6906321663039696 indicates moderate spillover, meaning 

changes in one variable significantly affect the volatility of the other. 
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When using volatility spillover analysis, the results indicate a significant volatility transfer 

between variables. The proposition states that each variable's oscillations significantly affect 

the other's volatility. The data is crucial for risk mitigation, portfolio optimization, and financial 

market interdependence and transmission. 

Pearson’s Correlation Coefficient: 

We then applied Pearson's Correlation Coefficient to our data. When studying volatility 

spillover, the correlation coefficient is useful. It measures linear relationships between 

variables, like asset volatility. The interdependence of volatilities can be determined by 

measuring their magnitude and direction. A robust positive correlation suggests volatility 

spillover, where changes in one asset's volatility are often accompanied by similar changes in 

the other. However, a low or negative correlation reduces volatility spillover, suggesting the 

two assets may have different volatility patterns. 

Results: 

 
Interpretation: 

Bitcoin and Ethereum volatilities are positively correlated with a correlation coefficient of 

0.7494. The observation suggests a strong volatility spillover between the two assets. Bitcoin 

volatility is likely to increase Ethereum volatility, and vice versa. Bitcoin and Ethereum's 

volatility dynamics are correlated, suggesting interdependence and interconnectedness. The 

statement implies that asset volatility affects other asset volatility. This must be considered 

when analyzing volatility spillover and developing Bitcoin and Ethereum risk management 

strategies. 

Spearman's Rank-Order Correlation Coefficient: 

Pearson's Correlation Coefficient is a reliable statistical analysis of two variables. When 

researching cryptocurrencies like Bitcoin and Ethereum, this method's assumptions of linearity, 

normality, and non-consideration of time dependency do not apply to our data, which is not 

linearly related, has a normal distribution, and is time dependent. Even if we find a strong 

correlation, misinterpretation is likely. We must run Spearman's Rank-Order Correlation 

Coefficient to fix this.The Spearman correlation of ranks is one of the most famous 

nonparametric procedures (Zar, 1972). The rank correlation coefficient, r, is usually expressed 

as 

𝑟𝑠 = 1 − 6 ∑
𝑑2

(𝑛3−𝑛)
 (Zar, 1972)   (1.1) 

In this context, "n" represents the quantity of measurements conducted for each of the two 

variables involved in the correlation analysis. ∑ 𝑑2 = ∑ 𝑑𝑖
2𝑛

𝑖=1  and 𝑑𝑖 is the ranked difference 

which refers to the disparity in rankings between the ith measurements of the two variates (Zar, 

1972). The measure being referred to is a non-parametric method used to evaluate the 

magnitude and direction of monotonic associations between two variables. The method does 
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not make assumptions about linearity and exhibits resilience to outliers. Considering the 

departure from normality in the returns of cryptocurrencies, the utilization of Spearman's rank-

order correlation may offer an alternative viewpoint (Gauthier, 2001). 

Spearman’s Rank-Order Correlation Coefficient Results for Bitcoin and Ethereum 

Returns data 

 

 

Interpretation of Spearman’s Rank-Order Correlation Coefficient Results for Bitcoin 

and Ethereum Returns Data 

The ρ (Rho) value of 0.667 suggests a strong positive correlation between Bitcoin and 

Ethereum returns. The returns of Bitcoin and Ethereum are positively correlated, meaning that 

when one cryptocurrency rises, the other rises too. The positive coefficient indicates a positive 

relationship between the returns of one cryptocurrency and the other, suggesting that an 

increase in one usually increases the other. This discovery is significant and suggests a positive 

return correlation between the two assets. A very small p-value (4.90219305e-316) indicates 

that the correlation is statistically significant. This implies that the correlation is unlikely to be 

random. However, it provides strong evidence that Bitcoin and Ethereum returns are correlated. 

Investors, traders, and portfolio managers must understand the strong correlation between 

Bitcoin and Ethereum returns. This suggests that fluctuations in one cryptocurrency's returns 

may predict the trajectory of another. This information is useful for Bitcoin and Ethereum 

portfolio diversification and risk management. The study shows that Bitcoin and Ethereum 

returns are highly correlated, indicating significant co-movement. This supports the overall 

focus of our study and shows how these assets' price fluctuations are interconnected. 

 

Spearman’s Rank-Order Correlation Coefficient Results for Bitcoin and Ethereum 

Returns data 

 

 

Interpretation of Spearman’s Rank-Order Correlation Coefficient Results for Bitcoin 

and Ethereum Realized Volatility Data 

The ρ (Rho) coefficient of 0.626 suggests a strong positive correlation between Bitcoin and 

Ethereum volatility.  

Simply put, when Bitcoin volatility rises, Ethereum volatility rises, and vice versa. A positive 

coefficient indicates that the second cryptocurrency will move in the same direction as the first 

when its realized volatility rises. This discovery is significant and suggests similar volatility 
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patterns for these two assets. The extreme low p-value (2.743471764290006e-267) suggests 

that the correlation is highly significant. This implies that the correlation is unlikely to be 

random. However, this study provides strong evidence that Bitcoin and Ethereum volatilities 

are correlated. Understanding the strong correlation between Bitcoin and Ethereum volatilities 

is essential for risk management and trading strategy development. This suggests that 

increasing volatility in one cryptocurrency often increases volatility in the other. Traders and 

investors must consider this relationship when choosing these assets. The study confirms that 

Bitcoin and Ethereum co-move when considering their volatility. This observation supports 

your study's central finding that these assets are linked by volatility as well as returns. These 

findings add significant value to the findings of the Pearson’s Correlation Coefficient. We will 

consider the Spearman’s Rank Correlation Coefficient for further analysis pertaining to our 

study. 

GARCH (1,1) parameter and conditional volatility analysis: 

Further we attempted to gain access to the estimated parameters and conditional volatilities of 

the Bivariate GARCH (1,1) model fitted onto the Bitcoin and Ethereum data. These are 

essential for comprehending the volatility dynamics of these two digital currencies. 

Results: 

 

Interpretation: 

The GARCH (1,1) model's estimated parameters offer insights into the volatility dynamics of 

the two cryptocurrencies as follows: 

 According to the analysis, the calculated value for the constant mean (mu) is 0.140824. 

This denotes the anticipated level of volatility for Bitcoin and Ethereum over an extended 

period of time. 

 According to the analysis, the calculated value for the constant term (omega) is 0.000177. 

The intercept term in the GARCH model captures the volatility level that is averaged over 

a long period of time. A diminutive numerical output implies that the model anticipates a 

comparably subdued level of volatility in the absence of recent exogenous perturbations. 

 The coefficient alpha [1] was estimated to be 0.200000. The aforementioned parameter is 

designed to measure the influence of previously computed squared residuals (ARCH term) 

on the current conditional volatility. A coefficient of 0.2 signifies that the present volatility 

calculation incorporates 20% of the squared residuals' historical impact. 
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 The point estimate for the coefficient beta [1] is 0.779999. The aforementioned parameter 

is designed to measure the influence of previous conditional volatility, specifically in 

relation to the GARCH term, on the present level of volatility. The numerical value of 

0.779999 denotes that the present calculation of volatility retains 77.9999% of the impact 

of past conditional volatility. 

 The conditional volatilities denote the assessed volatility estimates for individual 

cryptocurrencies across varying temporal intervals. The aforementioned values, which are 

[0.09501099, 0.09028828, 0.08646266, ..., 0.17497118, 0.19426945, 0.21019692], serve 

as indicators of the dynamic nature of volatility over time. Each of these values 

corresponds to a particular time period and represents an estimation of volatility. The 

aforementioned estimates are derived through the utilization of historical data and the 

estimated parameters of the GARCH (1,1) model. 

GARCH (1,1) parameter and conditional volatility analysis: 

Next, the covariance between Bitcoin and Ethereum's conditional volatilities is calculated and 

assessed. Additionally, the covariance matrix is standardized for volatility spillover analysis. 

The goal is to use volatility spillover analysis to determine the correlation between Bitcoin and 

Ethereum's conditional volatilities. By computing and standardizing the covariance matrix, the 

code helps analyze how volatility shocks or changes in one cryptocurrency affect another. 

Quantitative methods allow analysis of Bitcoin-Ethereum volatility spillover. This analysis is 

crucial to understanding cryptocurrency market interdependence and risk dynamics. 

Results: 

 

Interpretation: 

The matrix of covariance shows Bitcoin and Ethereum volatilities under conditional conditions. 

Each matrix element represents two variables' covariance. Both the top-left and top-right 

elements represent the covariance between Bitcoin's volatility and its own and Ethereum's 

volatility, respectively. The bottom-left and bottom-right elements represent Ethereum's 

volatility covariance with Bitcoin and its own volatility, respectively. Volatility spillover 

analysis suggests that the covariance matrix is essential for understanding the two 

cryptocurrencies' relationship. The covariance values indicate how cooperative two variables' 

volatility patterns are. The covariance values of 1.00040683 show a strong positive linear 

association and significant co-movement between Bitcoin and Ethereum volatilities. 

The covariance values. 

 The variance of each cryptocurrency's volatility is represented by the diagonal entries 

located at the top-left and bottom-right positions. A value in proximity to 1 denotes a 

comparatively elevated level of volatility for both Bitcoin and Ethereum. 
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 The elements located outside the main diagonal of the matrix, specifically those in the 

upper-right and lower-left quadrants, denote the degree of covariance that exists between 

the volatility of Bitcoin and Ethereum. The numerical value of 1.00040683 indicates a 

robust positive covariance, implying that fluctuations in volatility within one 

cryptocurrency are typically accompanied by corresponding fluctuations in the volatility 

of the other cryptocurrency. 

The volatility spillover analysis shows a strong correlation and interconnectedness between 

Bitcoin and Ethereum volatility trends. Volatility spillover effects occur when one 

cryptocurrency's volatility shocks another. The discovery helps explain Bitcoin-Ethereum 

interdependence and risk dynamics. It implies that one cryptocurrency's volatility may affect 

the other's volatility and risk exposure. 

Index measure for the relative contribution of each cryptocurrency's shocks to the total 

volatility: 

Using a VAR model, we tried to calculate the volatility spillover index between the 2 

cryptocurrencies. The objective of this code is to furnish a numerical gauge of volatility 

spillover, thereby enabling an evaluation of the extent to which alterations in volatility in a 

particular cryptocurrency affect the volatility of the other. 

Result: 

 

Interpretation: 

This matrix offers insights into the extent to which volatility spillover occurs between different 

cryptocurrencies, as viewed through the lens of volatility spillover analysis. 

 The numerical entry situated at the upper-leftmost position, specifically 0.20480518, 

denotes the ratio of the transmission of volatility from Bitcoin to Bitcoin itself. The 

aforementioned statement suggests that approximately 20.48% of Bitcoin's volatility can 

be attributed to its internal shocks or the volatility experienced in previous periods. 

 The proportion of volatility spillover from Ethereum to Ethereum itself is represented by 

the value located in the bottom-right position, which is 0.39972531. The aforementioned 

statement suggests that Ethereum's internal shocks or previous volatility account for 

roughly 39.97% of its overall volatility. 

 The numerical value located in the upper-right quadrant, specifically 0.19773476, denotes 

the ratio of the transmission of volatility from Bitcoin to Ethereum. This suggests that 

approximately 19.77% of Ethereum's volatility can be attributed to the impact of shocks 

or fluctuations in Bitcoin. 

 The numerical value located in the lower-left quadrant, specifically 0.19773476, denotes 

the ratio of the transfer of volatility from Ethereum to Bitcoin. This implies that 
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approximately 19.77% of the volatility exhibited by Bitcoin can be ascribed to 

perturbations or fluctuations in Ethereum. 

The spillover index values offer valuable insights into the respective impacts of the shocks or 

volatility of individual cryptocurrencies on the overall volatility of Bitcoin and Ethereum. The 

data suggests a noteworthy level of interdependence between Bitcoin and Ethereum, with both 

digital currencies exerting a substantial influence on each other's volatility. 

 

OVERALL DISCUSSION 

The Augmented Dickey-Fuller (ADF) test confirms Bitcoin and Ethereum return stationarity, 

which is crucial. Stationarity is crucial in time series analysis because it ensures statistical 

properties like mean and variance remain constant over time. Stability is crucial in modeling 

and forecasting, especially in finance, where precise predictions are crucial. Both 

cryptocurrencies show stationarity, suggesting that historical data patterns may predict future 

movements, which is significant for investors and analysts. Stationarity ensures data statistical 

properties remain stable over time, making predictive analytics reliable. Stability is crucial in 

financial modeling because accurate predictions aid decision-making. The JB test for Bitcoin 

and Ethereum returns rejects the null hypothesis, indicating a deviation from normal 

distribution. JB statistics and low p-values show that returns deviate from normality. Financial 

modeling typically assumes normality. However, these findings suggest caution. Extreme 

events, which are important in finance, are more likely to occur when deviation from normality 

is assumed. Risk management strategies should be adjusted to anticipate and respond to 

unexpected market fluctuations to address atypical situations. The lack of normality in 

cryptocurrencies makes applying conventional financial models difficult. Researchers need 

advanced statistical methods to handle non-normal data distributions. Skewness and kurtosis 

reveal return distribution shape. An elongated right tail with a positive skewness value indicates 

higher risk and potential positive returns. Heavy tails, which indicate more extreme events, are 

indicated by kurtosis values that significantly exceed 3. The cryptocurrency market is known 

for its volatility, which explains its heavy tail. Investors must consider these factors when 

planning risk management. Skewness and kurtosis reveal return distribution asymmetry and 

tail risk. Understanding these characteristics is essential for risk assessment and mitigation in 

the dynamic world of cryptocurrencies. 

The Ljung-Box Q Test and ARCH LM Test show autocorrelation and heteroskedasticity in 

Bitcoin and Ethereum returns. The Ljung-Box Q test shows residual autocorrelation, indicating 

return patterns. The historical performance of both cryptocurrencies suggests that past returns 

may predict future values, implying predictability. However, the level of predictability may be 

uncertain, requiring advanced modeling methods to effectively exploit this data. Understanding 

autocorrelations can help investors develop trading algorithms and make better decisions. 

However, heteroskedasticity in Bitcoin and Ethereum returns indicates that volatility is not 

uniform. Clusters of high volatility are followed by periods of similar volatility. This clustering 

phenomenon must be acknowledged for risk management to work. Investors must be aware 

that market conditions can change quickly, requiring dynamic strategies to adapt. 
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Autocorrelation analysis unveils the enduring nature of trends in cryptocurrency prices, thereby 

offering valuable insights for traders. Nevertheless, it is important to note that a trading strategy 

based solely on historical data may not effectively account for abrupt market fluctuations. Thus, 

it is crucial to adopt a well-rounded approach that incorporates various factors in order to 

mitigate potential risks and maximize trading outcomes. The presence of heteroskedasticity 

highlights the significance of implementing dynamic risk management strategies. The ability 

to adjust strategies in response to the clustering of volatility is a valuable skill for finance 

professionals operating in a dynamic and evolving cryptocurrency market. 

The GARCH and EGARCH models illuminate these cryptocurrencies' volatility dynamics. 

GARCH coefficients reveal much. Positive alpha coefficients indicate consistent volatility. 

Periods of high volatility tend to be followed by periods of comparable volatility, supporting 

clustering. Beta coefficients above 0 indicate the leverage effect, where high volatility is 

followed by high volatility. These findings support the market's inherent tendency to repeat 

high-activity periods. Due to their focus on volatility patterns, GARCH models are essential 

for cryptocurrency analysis. The ability to capture clustering and leverage effects helps traders 

make informed trading decisions and understand market behavior. EGARCH models are 

comprehensive and nuanced. Both scenarios have negative intercepts, indicating inherent 

volatility even without external disturbances. Positive alpha coefficients indicate that past 

volatility shocks affect future volatility asymmetrically. Positive beta coefficients indicate that 

high volatility lasts. The above findings show that cryptocurrency markets have irregular, 

asymmetric, and persistent volatility. The Vector Autoregressive (VAR) model shows 

unidirectional volatility spillover effects from Bitcoin to Ethereum. The VAR model shows a 

one-way causality from Bitcoin to Ethereum, highlighting Bitcoin's market dominance. 

However, Ethereum's lack of impact on Bitcoin's returns suggests Bitcoin's autonomy. Portfolio 

diversification and risk management require understanding these directional influences. The 

VAR (Vector Autoregression) model shows how major cryptocurrencies interact. Investors 

should diversify their portfolios to reduce spillover risks and manage cryptocurrency market 

volatility. Granger causality tests support the one-way influence relationship between Bitcoin 

and Ethereum returns. Granger causality analysis provides nuanced understanding. The impact 

of Bitcoin on Ethereum suggests a correlation between Bitcoin's historical returns and 

Ethereum's predictive ability. The predictive association shows how popular cryptocurrencies 

are linked. However, Ethereum's lack of influence on Bitcoin shows market behavior, 

highlighting these cryptocurrencies' unique dynamics. Granger causality analysis illuminates 

cryptocurrency temporal associations, improving our understanding of market leadership 

dynamics. Understanding these dynamics is essential for cryptocurrency market strategy. 

The existence of two eigenvalues in the Johansen co-integration test indicates the presence of 

two co-integrating relationships between Bitcoin and Ethereum. The identification of co-

integrating vectors between Bitcoin and Ethereum implies the existence of enduring 

associations between the two cryptocurrencies. Although the specific details of these 

relationships are not provided, their presence suggests a potential interconnectedness that may 

be influenced by market-wide factors that affect both cryptocurrencies in a similar manner. 

This observation indicates that there are shared long-term trends between these two 
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cryptocurrencies. A comprehensive grasp of co-integration is imperative in the context of 

portfolio diversification and risk management. The high correlation coefficient between 

Bitcoin and Ethereum volatilities suggests a strong positive correlation. This implies that one 

cryptocurrency's volatility usually reflects the other's. Both Bitcoin and Ethereum Returns and 

Realized Volatility data show a statistically significant positive correlation. The correlation 

between these digital assets is crucial to understanding their interconnectedness and influence. 

A strong correlation suggests Bitcoin and Ethereum prices, returns, and volatilities move 

together. Diversification across asset classes reduces risks associated with correlated assets, 

making it essential for cryptocurrency investment management.The covariance matrix shows 

a strong positive linear and statistically significant correlation between Bitcoin and Ethereum 

volatilities. The covariance matrix shows intensity and direction of co-movement. A strong 

positive linear relationship has a covariance value around 1. Our high covariance suggests that 

one cryptocurrency's volatility shocks affect the other. Bitcoin and Ethereum's risk spillover 

and interdependence are shown here. This suggests that their volatility patterns are highly 

interconnected. The covariance values reveal Bitcoin and Ethereum co-movements. These 

common trends must be understood by investors to build a well-rounded and diversified 

portfolio. 

Bitcoin and Ethereum volatility spillover index. The results indicate that one cryptocurrency's 

volatility affects another's and that both have a significant reciprocal effect. The high spillover 

indices show how interconnected major cryptocurrencies are. Our Volatility Spillover Index 

shows Bitcoin and Ethereum volatility moving together. Spillover coefficients measure how 

much one cryptocurrency shocks affect another's volatility. This context's coefficients quantify 

variable interdependence, aiding risk assessment and portfolio management. Investors should 

be aware of this interdependence and adapt their strategies to market dynamics. Large spillover 

indices show how interdependent major cryptocurrencies are. Investors must monitor this 

interdependence and adapt their strategies to market dynamics. Individual cryptocurrency 

shocks affect market volatility as shown by the spillover index. Bitcoin and Ethereum have 

high self-spillover, indicating internal issues cause their volatility. Significant volatility 

influences suggest they are risk-connected.  

Importantly,  

a. The aforementioned statement suggests that approximately 20.48% of Bitcoin's volatility 

can be attributed to its internal shocks or the volatility experienced in previous periods. 

b. The aforementioned statement suggests that Ethereum's internal shocks or previous 

volatility account for roughly 39.97% of its overall volatility. 

c. Approximately 19.77% of Ethereum's volatility can be attributed to the impact of shocks 

or fluctuations in Bitcoin. 

d. Approximately 19.77% of the volatility exhibited by Bitcoin can be ascribed to 

perturbations or fluctuations in Ethereum. 

These insights possess significant value not only for individuals in academia but also for 
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investors, traders, and policymakers alike. Comprehending the intricate nuances of these 

relationships is imperative within the dynamic and interconnected realm of cryptocurrencies. 

The utilization of this approach facilitates the development of resilient investment strategies, 

efficient risk mitigation, and well-informed decision-making, consequently augmenting the 

overall stability and resilience of the cryptocurrency market. 

 

CONCLUSION 

Bitcoin and Ethereum are prominent partners in the complex dance of cryptocurrencies, each 

making individual movements while synchronizing in a coordinated rhythm. Our thorough 

analysis sought to elucidate the subtleties of this crypto tango by illuminating their causal 

connections, volatility trends, and common dynamics. We have gained important insights 

through thorough statistical testing and analysis, revealing the key findings listed below: 

1. Volatility Patterns and Causality 

This study used GARCH and EGARCH models to analyze Bitcoin and Ethereum volatility. 

These crypto assets' intrinsic characteristics were revealed by captivating clustering patterns 

and enduring volatility. Our Granger causality analysis showed a one-way causal relationship 

between Bitcoin and Ethereum. We found that past Bitcoin returns significantly affect 

Ethereum returns, but not otherwise. This discovery improves our understanding of their 

relationship and affects predictive models and trading tactics. The identification of this causal 

relationship can help investors and traders make informed decisions. By using historical 

Bitcoin returns to predict Ethereum performance, traders can improve their investment 

strategies. 

2. Interdependence and Spillover effects 

This study examined Bitcoin and Ethereum volatility using GARCH and EGARCH models. 

Charming clustering patterns and persistent volatility revealed these crypto assets' intrinsic 

qualities. Bitcoin and Ethereum had a one-way Granger causality relationship. Past Bitcoin 

returns significantly affect Ethereum returns, but not otherwise. This discovery enhances our 

understanding of their relationship and impacts predictive models and trading strategies. 

Understanding this causal relationship can help investors and traders make decisions. Trading 

strategies can be improved by using historical Bitcoin returns to predict Ethereum performance. 

3. Long-term Co-integration and Diversification Opportunities 

The Johansen test co-integration findings were insightful. Despite short-term volatility, co-

integrating vectors indicate a long-term relationship between Bitcoin and Ethereum. This 

discovery helps us understand their common factors and implement strategic diversification. 

Diversifying portfolios with these cryptocurrencies can help investors manage risks and 

improve stability due to their co-integration. Investors can diversify long-term with co-

integration. Bitcoin and Ethereum can boost risk-adjusted returns and reduce price volatility 

for investors. 

4. Implications for Risk Management and Future Research 
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The findings have wide-ranging implications. Understanding Bitcoin-Ethereum causal 

relationships, volatility spillovers, and co-integration dynamics is essential for risk 

management. These insights allow investors to use advanced strategies to reduce risks and 

optimize their portfolios. Our study also encourages academics and professionals to study 

cryptocurrencies further. Predictive modeling, behavioral analysis, and digital resources can 

enable more complex research. This study's findings can inform future research and 

policymaking. Predictive modelling and behavioral analysis of Bitcoin and Ethereum can 

reveal their dynamics. Our research shows the Bitcoin-Ethereum correlation's complexity and 

has implications for investors, policymakers, and scholars. By analyzing the relationships 

between cryptocurrency digital entities, our research advances the industry. This investigation 

will provide direction for future projects and deepen understanding of digital economics as 

people navigate the ever-changing cryptocurrency domain. 
 

References 

1) Adhami, S., Giudici, G., & Martinazzi, S. (2018). Why Do Businesses Go Crypto? An Empirical Analysis 

of Initial Coin Offerings. Journal of Economics and Business, 64–75. 

2) Afilipoaie, A., & Shortis, P. (2015). The Booming Market of Alternative Cryptocurrencies. Global Drug 

Policy Observatory. 

3) Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2019). Cryptocurrency market contagion: Market 

uncertainty, market complexity, and dynamic portfolios. Journal of International Financial Markets, 

Institutions and Money, 61,, 37-51. 

4) Aslanidis, N., Bariviera, A. F., & Perez-Laborda, A. (2021). Are cryptocurrencies becoming more 

interconnected? Economics Letters, 199, 109725.  

5) Auer, R., Cornelli, G., Doerr, S., Frost, J., & Gambacorta, L. (2023). Crypto Trading and Bitcoin Prices: 

Evidence from a New Database of Retail Adoption. CESifo Working Paper, No. 10266, Center for Economic 

Studies and ifo Institute (CESifo), Munich. 

6) Auer, R., Cornelli, G., Doerr, S., Frost, J., & Gambacorta, L. (2023). Crypto trading and Bitcoin prices: 

evidence from a new database of retail adoption. CESifo Working Paper, No. 10266, Center for Economic 

Studies and ifo Institute (CESifo), Munich. 

7) Basilico, E., & Johnsen, T. (2019). Cryptocurrencies: A Fledgling Asset Class, But It Is Too Early to Tell. 

Smart(er) Investing. 

8) Bhambhwani, S., Delikouras, S., & Korniotis, G. M. (2019). Do fundamentals drive cryptocurrency prices? 

Centre for Economic Policy Research.  

9) Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 

31(3),, 307-327. 

10) Bommer, W. H., Milevoj, E., & Rana, S. (2023). The intention to use cryptocurrency: A meta-analysis of 

what we know. merging Markets Review, 55, 100962.  

11) Bonaparte, Y. (2022). Time horizon and cryptocurrency ownership: Is crypto not speculative?. Journal of 

International Financial Markets, Institutions and Money, 79,101609.  

12) Bonaparte, Y. (2023). Introducing the cryptocurrency vix: Cvix. Finance Research Letters, 54, 103712.  

13) Bouri, E., Molnár, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties 

of Bitcoin: Is it really more than a diversifier?. Finance Research Letters, 20, , 192-198. 

14) Bulut, A. (2018). Cryptocurrencies in the New Economy. Journal of International Trade, Logistics & Law, 

45-52. 



  
  
 
 

DOI: 10.5281/zenodo.10454262 

1326 | V 1 8 . I 1 2  

15) Buterin, V. (2014). A next-generation smart contract and decentralized application platform. white paper, 

3(37), 2-1.  

16) Chan, W., Le, M., & Wu, Y. (2019). Holding Bitcoin longer: The dynamic hedging abilities of Bitcoin. The 

Quarterly Review of Economics and Finance, 71,, 107-113. 

17) Chougule, P., & Tulpule, D. (2021). CONCEPTUAL STUDY OF CRYPTOCURRENCIES. World Journal 

of Engineering Research and Technology, 86-100. 

18) Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships 

between cryptocurrencies and other financial assets. Economics Letters, 28-34. 

19) Dangi, V. (2020). Volatility Dynamics of Cryptocurrencies’ Returns:An Econometric Study. The IUP Journal 

of Applied Finance, 5-30. 

20) Deepika, P., & Kaur, E. R. (2017). Cryptocurrency: trends, perspectives, and challenges. International 

Journal of Trend in Research and Development, 4(4),, 4-6. 

21) Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a 

unit root. Journal of the American statistical association, 27-431. 

22) Dyhrberg, A. (2016). Bitcoin, gold, and the dollar- A GARCH volatility analysis. Finance Research Letters, 

85-92. 

23) Dyhrberg, A. (2016). Hedging capabilities of bitcoin. Is it the virtual gold? . Finance Research Letters, 139-

144. 

24) Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United 

Kingdom inflation. Econometrica: Journal of the econometric society,, 987-1007. 

25) Gajardo, G., Kristjanpoller, W. D., & Minutolo, M. (2018). Does Bitcoin exhibit the same asymmetric 

multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen? . 

Chaos, Solitons & Fractals, 195-205. 

26) García-Corral, F. J., Cordero-García, J. A., de Pablo-Valenciano, J., & Uribe-Toril, J. (2022). A bibliometric 

review of cryptocurrencies: how have they grown? Financial innovation, 1-31. 

27) Gauthier, T. D. (2001). Detecting trends using Spearman's rank correlation coefficient. Environmental 

forensics, 2(4),, 359-362. 

28) Gerard, D. (2017). Attack of the 50 foot blockchain: Bitcoin, blockchain, Ethereum & smart contracts. .  

29) Ghorbel, A., & Jeribi, A. (2021). Investigating the relationship between volatilities of cryptocurrencies and 

other financial assets. Decisions in Economics & Finance, 817-843. 

30) Godbole, O. (2021, September 14th). J P Morgan Predicts Bitcoin Price Could Rise Over $146K in Long 

Term. Retrieved from Coindesk.com: https://www.coindesk.com/markets/2021/01/05/jpmorgan-predicts-

bitcoin-price-could-rise-over-146k-in-long-term/ 

31) Groeneveld, R. A., & Meeden, G. (1984). Measuring skewness and kurtosis. ournal of the Royal Statistical 

Society Series D: The Statistician, 33(4), 391-399. 

32) Guesmi, K., Saadi, S., Abid, I., & Ftiti, Z. (2019). Portfolio diversification with virtual currency: Evidence 

from bitcoin. . International Review of Financial Analysis, 63, , 431-437. 

33) Hicks, C. (2023, March 15). Forbes Advisor. Retrieved from Forbes.com: 

https://www.forbes.com/advisor/investing/cryptocurrency/different-types-of-

cryptocurrencies/#:~:text=How%20Many%20Cryptocurrencies%20Are%20There,market%20capitalizatio

n%20of%20%241.1%20trillion. 

34) Iansiti, M., & Lakhani, K. R. (2017). The truth about blockchain. Harvard business review, 95(1), , 118-127. 

35) Iorngurum, T., & Nwaobi, G. (2021). An impulse response function analysis of the impact of modern 

payment technologies on money demand in Nigeria. Theoretical & Applied Economics, 28(2).  



  
  
 
 

DOI: 10.5281/zenodo.10454262 

1327 | V 1 8 . I 1 2  

36) Jarque, C. M., & Bera, A. K. (1980). A test for normality of observations. International Statistical.  

37) Ji, Q., Bouri, E., Gupta, R., & Roubaud, D. (2018). Network causality structures among Bitcoin and other 

financial assets: A directed acyclic graph approach. The Quarterly Review of Economics and Finance, 70,, 

203-213. 

38) Ji, Q., Bouri, E., Lau, C. K., & Roubaud, D. (2019). Dynamic connectedness and integration in 

cryptocurrency markets. International Review of Financial Analysis, 257-272. 

39) Ji, Q., Bouri, E., Lau, C. K., & Roubaud, D. (2019). Dynamic connectedness and integration in 

cryptocurrency markets. International Review of Financial Analysis, 63,, 257-272. 

40) Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of economic dynamics and control, 

12(2-3),, 231-254. 

41) Katsiampa, P., Corbet, S., & Lucey, B. (2019). Volatility spillover effects in leading cryptocurrencies: A 

BEKK-MGARCH analysis. Finance Research Letters, 29, , 68-74. 

42) Khan, R., & Hakami, T. A. (2022). Cryptocurrency: usability perspective versus volatility threat. . Journal 

of Money and Business, 2(1), , 16-28. 

43) Konya, L. (2004). Unit-root, cointegration and Granger causality test results for export and growth in OECD 

countries. International Journal of applied econometrics and quantitative studies, 1(2),, 67-94. 

44) Koutmos, D. (2018). Return and volatility spillovers among cryptocurrencies. Economics Letters, 173, , 122-

127. 

45) Kumar, A., Iqbal, N., Mitra, S. K., Kristoufek, L., & Bouri, E. (2022). Connectedness among major 

cryptocurrencies in standard times and during the COVID-19 outbreak. . Journal of International Financial 

Markets, Institutions and Money, 77, 101523.  

46) Li, X., Gan, K., & Zhou, Q. (2023). Dynamic volatility connectedness among cryptocurrencies and China's 

financial assets in standard times and during the COVID-19 pandemic. Finance Research Letters, 51, 

103476.  

47) Martino, P., Wang, K. J., Bellavitis, C., & DaSilva, C. M. (2020). An introduction to blockchain, 

cryptocurrency and initial coin offerings. New frontiers in entrepreneurial finance research, 181-206. 

48) Metes, D. V. (2005). Visual, unit root and stationarity tests and their power and accuracy. Department of 

Mathematical and Statistical Sciences. 

49) Moratis, G. (2021). Quantifying the spillover effect in the cryptocurrency market. Finance Research Letters, 

38, 101534. 

50) Morkunas, V., Paschen, J., & Boon, E. (2019). How blockchain technologies impact your business model. 

Business Horizons, 295–306. 

51) Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Bitcoin.Org. 

52) Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and cryptocurrency 

technologies: a comprehensive introduction. Princeton University Press. 

53) Nemeczek, F., & Weiss, D. (2023). Insights on Crypto Investors from a German Personal Finance 

Management App. Journal of Risk and Financial Management, 16(4), 248.  

54) Poongodi, M., Vijayakumar, V., & Chilamkurti, N. (2020). Bitcoin price prediction using ARIMA model. 

International Journal of Internet Technology and Secured Transactions. 

55) Rana, S., Eshita, N. N., & Al Mamun, A. S. (2021). Robust normality test in the presence of outliers. Journal 

of Physics: Conference Series (Vol. 1863, No. 1, p. 012009). 

56) Raval, S. (2016). Decentralized applications: harnessing Bitcoin's blockchain technology. O'Reilly Media, 

Inc. 

57) Sagona-Stophel, K. (2016). Bitcoin 101 white paper. Bitcoin 101 white paper. Thomson Reuters. 



  
  
 
 

DOI: 10.5281/zenodo.10454262 

1328 | V 1 8 . I 1 2  

58) Selmi, R., Mensi, W., Hammoudeh, S., & Bouoiyour, J. (2018). Is Bitcoin a hedge, a safe haven or a 

diversifier for oil price movements? A comparison with gold. Energy Economics, 74,, 787-801. 

59) Sen, C. C., & Sarkar, A. (1981). Asymmetric Response in Foreign Exchange Volatility under Structural 

Break. 

60) Singh, S., & Mittal, S. K. (2022). Volatility Dynamics of BITCOIN amidst COVID-19 through GARCH 

Modelling. Finance India. 

61) Sjö, B. (2008). Testing for unit roots and cointegration. Lectures in Modern Econometric Time series 

Analysis.  

62) Tapscott, D., & Tapscott, A. (2016). Blockchain revolution: how the technology behind bitcoin is changing 

money, business, and the world. Penguin. 

63) Urquhart, A., & Zhang, H. (2019). Is Bitcoin a hedge or safe haven for currencies? An intraday analysis. 

International Review of Financial Analysis, 63, 49-57. 

64) Velde, F. (2013). Bitcoin: A primer. Chicago Fed Letter. 

65) Verbeek, M. (2017). A guide to modern econometrics. John Wiley & Sons. 

66) Wang, G. J., Ma, X. Y., & Wu, H. Y. (2020). Are stablecoins truly diversifiers, hedges, or safe havens against 

traditional cryptocurrencies as their name suggests? Research in International Business and Finance, 54. 

67) Wang, G., Tang, Y., Xie, C., & Chen, S. (2019). Is bitcoin a safe haven or a hedging asset? Evidence from 

China. Journal of Management Science and Engineering, 4(3),, 173-188. 

68) Wang, M. (2020). Bitcoin and its impact on the economy. arXiv preprint arXiv:2010.01337.  

69) Xu, Q., Zhang, Y., & Zhang, Z. (2021). Tail-risk spillovers in cryptocurrency markets. Finance Research 

Letters, 38, 101453.  

70) Yang, S. (2018). Want to keep up with bitcoin enthusiasts? learn the lingo. The Wall Street Journal.  

71) Yi, S., Xu, Z., & Wang, G. J. (2018). Volatility connectedness in the cryptocurrency market: Is Bitcoin a 

dominant cryptocurrency? International Review of Financial Analysis, 60,, 98-114. 

72) Zar, J. H. (1972). Significance testing of the Spearman rank correlation coefficient. Journal of the American 

Statistical Association, 67(339),, 578-580. 

73) Zivot, E., & Wang, J. (2006). Vector autoregressive models for multivariate time series. Modeling financial 

time series with S-PLUS®, 385-429. 


