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Abstract 

This research proposes a credit score model for cooperatives using machine learning. Until now, there is no 

standard credit score assessment in savings and loan cooperatives in Indonesia. There are still many savings and 

loan cooperatives that provide loans due to closeness to the management or manager of the cooperative. The 

purpose of this research is to obtain a credit scoring method through machine learning that is effective, efficient 

and high accuracy. To predict the chance of default, this research uses seven machine learning algorithms namely 

Logistic Regression Classifier, Support Vector Machine Classifier, K-Neighbors Classifier, Decision Tree 

Classifier, Random Forest Classifier, XGBoost Classifier, and Light Gradient Boosting Machine Classifier. The 

data taken from the loan data of 851 members of Bank BPD Jateng "Yakekar" Cooperative, Semarang, Indonesia. 

The results show that Logistic Regression, Support Vector Machine Classifier, and K-Neighbors Classifier are 

the models that have relatively better performance in identifying 'Current' collectibility. However, all models have 

difficulty in classifying other collectibility ('Bad' and 'Doubtful') with low precision and recall. 

Keywords: Machine Learning; Credit Scoring; Cooperatives. 

 

1. INTRODUCTION 

Google and Temasek report (2019) states that the Indonesian population is 23% banked, 26% 

underbanked and 51% unbanked. Underbanked and unbanked are groups with low financial 

inclusion or unserved in financial services. Banks will only provide access to bankable groups 

that have a credit history through credit scoring. Thus, those with no credit history will not get 

access to loans because there is no data available for scoring (Niu et al., 2019). 

This unserved group will then seek other financial access such as peer-to-peer lending (Hidajat, 

2019) and cooperatives. Since potential customers or borrowers do not have a credit history, 

the credit risk in these institutions is greater. For P2P, which is usually owned by fintech 

companies with large capital, the utilization of credit score to handle default risk in assessing 

prospective borrowers has undergone tremendous development.  

Currently, fintech is using big data technology to help process prospective borrowers 

(Campbell-Verduyn et al., 2017). However, cooperatives as the pillar of the Indonesian 

economy have not progressed in credit scoring. In fact, credit scoring requires detailed profile 

data of prospective borrowers so that lending is more accurate. 
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Cooperatives also have to maintain liquidity and solvency levels (da Silva Filho, 2002) so the 

profile of co-operative members should consist of people who do not have bad records. Thus, 

it is important to explore borrower characteristics that can minimise the potential for default in 

savings and loan cooperatives. The challenge that arises in credit scoring and the problem in 

this research is how to find potential borrowers with an effective and efficient process that has 

high accuracy. 

In the financial industry, credit scoring is widely used to measure credit risk (Vasconcellos et 

al., 2019). Initially, a widely used technique was logistic regression. However, this method has 

weaknesses when variables exhibit complex nonlinear relationships (Bahnsen et al., 2016).  

Nonetheless, logistic regression models have strong advantages in terms of interpretability and 

variable stability so that they can be applied to the prediction of borrower default behaviour 

(Wang et al., 2020). 

Credit scoring has evolved by utilising artificial intelligence (Thomas, 2000) such as machine 

learning and producing more accurate and efficient models (Dastile et al., 2020). Machine 

learning is an artificial intelligence application that uses statistical techniques to generate 

models from a set of data. Some examples of the implementation of machine learning methods 

in research include decision trees, AdaBoost, support vector machines (K. et al., 2020), neural 

networks (Malhotra & Malhotra, 2003), and k-nearest neighbors (West, 2000). The advantages 

of machine learning include being able to ignore assumptions in logistic regression and produce 

better classification (Vasconcellos et al., 2019). 

Some uses of machine learning for credit scoring include the use of Random Forest, AdaBoost, 

and LightGBM to predict the chances of default in peer-to-peer lending using social network 

information in China (Niu et al., 2019), random forest to assess the effectiveness of the credit 

union lending process in Brazil (Vasconcellos et al., 2019), Naive Bayesian Model, Logistic 

Regression Analysis, Random Forest, Decision Tree, and K-Nearest Neighbor Classifier for 

bank loans in China (Wang et al., 2020).  

This research proposes a credit score model for cooperatives using machine learning. Until 

now, there has been no standard credit score assessment in savings and loan cooperatives. 

There are still many savings and loan cooperatives that provide loans due to closeness to the 

management or manager of the cooperative (Sucipto, 2015). This research is important because 

cooperatives in Indonesia are currently not supervised by the Financial Services Authority but 

only through the cooperative supervisor. In addition, unlike financial service institutions such 

as banks and peer-to-peer lending, the development of credit scores, especially through 

machine learning, in cooperatives has received less attention. A reliable credit score will also 

minimise the risk of default and make cooperatives a more reliable and healthy institution. 

 

2. METHODOLOGY 

To predict the probability of default, this research uses seven machine learning algorithms 

namely Logistic Regression Classifier, Support Vector Machine Classifier, K-Neighbors 

Classifier, Decision Tree Classifier, Random Forest Classifier, XGBoost Classifier, and Light 
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Gradient Boosting Machine Classifier. The results of the seven methods will then be compared 

to see if there is a difference and if so, which method is best used to predict the chance of 

default.  

The data source is taken from the database of BPD Jateng Bank Consumer Cooperative 

"Yakekar", Semarang, Indonesia. This cooperative has 851 members who are employees and 

retired employees of Bank Jateng. 

 

3. RESULTS  

3.1. Logistic Regression Classifier 

Logistic Regression Classifier is a machine learning algorithm for predicting the probability of 

a target class or discrete dependent variable based on multiple independent variables or 

predictor variables that are continuous or discrete. In logistic regression, a logistic or sigmoid 

function is used to transform the independent variable into a value that lies between 0 and 1, 

which can be interpreted as the probability of the relevant target class. Then, these probabilities 

are compared with a certain threshold value, and a decision is made about the target class 

corresponding to these probabilities.  

The Classification Report and AUC-ROC Score of the Logistic Regression Classifier in this 

study provided the following results. 

(1) Class -1 and 0. These two classes have a precision and recall of around 1.00 for the positive 

class (class 1), which means that all predictions given for these two classes are correct with 

respect to class 1. However, the recall for class -1 and 0 to their own class (self-recall) is 

very low (0.00), which indicates that the model is almost unable to identify samples from 

these classes. This condition can be problematic, especially if these classes have important 

business or analytical significance. 

(2) Class 1. This class has a precision of around 0.98 and a recall of around 1.00 against itself, 

which indicates that the model is very good at classifying class 1 samples. The F1-score is 

also high (0.99), indicating very good performance. 

(3) Overall Accuracy. The overall accuracy of the model is 0.98. However, accuracy can be 

biased in cases of class imbalance like this, where the majority of samples are from class 

1. 

3.2. AUC-ROC Score 

The AUC-ROC Score (Area Under the Receiver Operating Characteristic Curve) is 0.625. 

AUC-ROC measures the ability of the model to distinguish between positive and negative 

classes. The AUC-ROC score of 0.625 indicates that the model performs reasonably well in 

this regard, but there is still room for improvement. 
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The conclusions for the Logistic Regression Classifier are as follows: 

(1) The Logistic Regression Classifier performs very well in identifying class 1, with high 

precision and recall and F1-score close to 1. This indicates that the model is effective in 

classifying class 1 samples. However, the model does not seem to be effective in 

identifying classes -1 and 0, as seen from the very low precision, recall, and F1-score for 

these classes. 

(2) High overall accuracy may be misleading due to class imbalance. Therefore, the AUC-

ROC Score provides a more holistic picture of the model's performance in distinguishing 

positive and negative classes. With an AUC-ROC Score of about 0.625, there is still room 

for improvement in the model's ability to distinguish the classes. It is worth considering 

strategies such as handling class imbalance or exploring other models if the -1 and 0 classes 

are also considered important in the analysis. 

3.3. Support Vector Machine Classifier 

Support Vector Machine (SVM) Classifier is a machine learning algorithm used to classify 

data by building a mathematical model that identifies the optimal decision boundary to 

distinguish two or more classes (binary classification). The SVM model works by finding the 

line that separates the two classes with the maximum distance (margins) so that the model is 

more general in classifying new data that has never been seen before. Classification Report 

Support Vector Machine Classifier in this study provides the following results.  

(1) Class -1 and 0. These two classes have very low precision, recall, and F1-score (0.00), 

indicating that the SVM model is barely able to identify or predict samples from these two 

classes. This can be a serious problem if these classes have important business or analytical 

significance. 

(2) Class 1. This class has a precision of about 0.98, a recall of about 1.00, and an F1-score of 

about 0.99, indicating that the SVM model is very good at classifying class 1 samples. This 

is a positive aspect of the model's performance. 

(3) Overall Accuracy. The overall accuracy of the model was 0.98. However, it is important 

to note that accuracy can be biased in cases of class imbalance such as this, where the 

majority of samples are from class 1. 

The conclusion for Support Vector Machine (SVM) is as follows.  

(1) The SVM model performed very well in identifying class 1, with high precision, recall, 

and F1-score. This indicates that the model is effective in classifying class 1 samples. 

However, the model does not seem to be effective in identifying classes -1 and 0, which is 

evident from the very low precision, recall, and F1-score for these classes. This is a 

negative aspect of the model's performance. 

(2) High overall accuracy may be misleading due to class imbalance. Therefore, it is necessary 

to consider strategies such as handling class imbalance or exploration of other models if 

the -1 and 0 classes are also important in the analysis. 
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(3) Overall, the performance of the SVM model in this context depends on the importance of 

certain classes in the analysis. If class 1 is the main focus and classes -1 and 0 are minority 

or less important, then the SVM model may be suitable. However, if all classes are 

important, further consideration needs to be given to improving the performance of the 

model for the minority classes. 

3.4. K-Neighbours Classifier 

K-Neighbors Classifier (KNN) is a machine learning algorithm used to classify data based on 

the majority category of the nearest neighbours (majority vote) of the given data. KNN works 

by storing all training data as a representation of the dataset and finding the majority category 

of the k nearest neighbours of the new data. The number k is predetermined and usually an odd 

number to ensure there is no draw in the majority voting process. KNN can also be used to 

perform regression by calculating the average value of the k nearest neighbours. 

Classification Report K-Neighbors Classifier in this study provides the following results. 

(1) Class -1 and 0. These two classes have a precision and recall of around 0.00, which shows 

that the K-Neighbors Classifier model is almost unable to identify or predict samples from 

these two classes. This indicates very poor performance in classifying samples from 

classes -1 and 0. 

(2) Class 1. This class has a precision of around 0.98, a recall of around 0.99, and an F1-score 

of around 0.99, which indicates that the K-Neighbors Classifier model is very good at 

classifying class 1 samples. This is a positive aspect of the model's performance. 

(3) Overall Accuracy. The overall accuracy of the model is 0.97. However, it is important to 

remember that accuracy can be biased in cases of class imbalance like this, where the 

majority of samples are from class 1. 

The conclusion for the K-Neighbors Classifier is as follows. 

(1) The K-Neighbors Classifier model has excellent performance in identifying class 1, with 

high precision, recall and F1-score. This indicates that the model is effective in classifying 

class 1 samples. However, the model does not seem to be effective in identifying classes -

1 and 0, which can be seen from the very low precision and recall for these classes. This 

is a negative aspect of the model's performance. 

(2) High overall accuracy may be misleading due to class imbalance. Therefore, it is necessary 

to consider strategies such as handling class imbalance or exploring other models if classes 

-1 and 0 are also important in the analysis. 

(3) Overall, the performance of the K-Neighbors Classifier model in this context depends on 

the importance of certain classes in the analysis. If class 1 is the main focus and classes -1 

and 0 are a minority or less important, then the K-Neighbors Classifier model may be 

suitable. However, if all classes are important, further consideration is needed in improving 

the model's performance against minority classes. 
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3.5. Decision Tree Classifier. 

Decision Tree Classifier is a machine learning algorithm that is used to classify data by building 

a decision tree structure that can describe the relationship between several input and output 

variables. The Decision Tree Classifier model works by dividing the dataset into smaller 

subsets based on rules discovered from the input variables. 

At each level, the algorithm will choose the best input variables (the ones with the most 

influence) to divide the dataset into increasingly smaller subsets. This process is carried out 

recursively until there are no more subsets that can be divided or the specified tree depth limit 

is reached. 

The Classification Report results for the Decision Tree Classifier model are as follows. 

(1) Class -1 and 0. These two classes have a precision and recall of around 0.00, which shows 

that the Decision Tree Classifier model is almost unable to identify or predict samples from 

these two classes. This indicates very poor performance in classifying samples from 

classes -1 and 0. 

(2) Class 1. This class has a precision of around 0.98, a recall of around 0.99, and an F1-score 

of around 0.98, which indicates that the Decision Tree Classifier model is very good at 

classifying class 1 samples. This is a positive aspect of the model's performance. 

(3) Overall Accuracy. The overall accuracy of the model is 0.96. However, it is important to 

remember that accuracy can be biased in cases of class imbalance like this, where the 

majority of samples are from class 1. 

The conclusion for the K-Neighbors Classifier is as follows. 

(1) The Decision Tree Classifier model has excellent performance in identifying class 1, with 

high precision, recall and F1-score. This indicates that the model is effective in classifying 

class 1 samples. However, the model does not seem to be effective in identifying classes -

1 and 0, which can be seen from the very low precision and recall for these classes. This 

is a negative aspect of the model's performance. 

(2) High overall accuracy may be misleading due to class imbalance. Therefore, it is necessary 

to consider strategies such as handling class imbalance or exploring other models if classes 

-1 and 0 are also important in the analysis. 

(3) Overall, the performance of a Decision Tree Classifier model in this context depends on 

the importance of certain classes in your analysis. If class 1 is the main focus and classes 

-1 and 0 are a minority or less important, then a Decision Tree Classifier model may be 

suitable. However, if all classes are important, further consideration is needed in improving 

the model's performance against minority classes. 
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3.6. Random Forest Classifier 

Random Forest Classifier is a machine learning algorithm which is a development of the 

Decision Tree Classifier and is used to classify data. The Random Forest Classifier model 

works by building many decision trees randomly on a subset of training data and conducting 

majority voting on the classification results provided by each tree. 

The Classification Report results for the Random Forest Classifier model are as follows. 

(1) Class -1 and 0. These two classes have a precision and recall of around 0.00, which shows 

that the Random Forest Classifier model is almost unable to identify or predict samples 

from these two classes. This indicates very poor performance in classifying samples from 

classes -1 and 0. 

(2) Class 1. This class has a precision of around 0.98, a recall of around 0.99, and an F1-score 

of around 0.98, which indicates that the Random Forest Classifier model is very good at 

classifying class 1 samples. This is a positive aspect of the model's performance. 

(3) Overall, the overall accuracy of the model is 0.96. However, it is important to remember 

that accuracy can be biased in cases of class imbalance like this, where the majority of 

samples are from class 1. 

The conclusion for the Random Forest Classifier is as follows. 

(1) The Random Forest Classifier model has excellent performance in identifying class 1, with 

high precision, recall and F1-score. This indicates that the model is effective in classifying 

class 1 samples. However, the model does not seem to be effective in identifying classes -

1 and 0, which can be seen from the very low precision and recall for these classes. This 

is a negative aspect of the model's performance. 

(2) High overall accuracy may be misleading due to class imbalance. Therefore, it is necessary 

to consider strategies such as handling class imbalance or exploring other models if classes 

-1 and 0 are also important in the analysis. 

(3) Overall, the performance of a Random Forest Classifier model in this context depends on 

the importance of certain classes in your analysis. If class 1 is the main focus and classes 

-1 and 0 are a minority or less important, then a Random Forest Classifier model may be 

suitable. However, if all classes are important, further consideration is needed in improving 

the model's performance against minority classes. 

3.7. XGBoost Classifier 

XGBoost Classifier (Extreme Gradient Boosting Classifier) is a machine learning algorithm 

that is used to classify data using ensemble learning (combining models). XGBoost is a 

development of the Gradient Boosting algorithm which has better performance in overcoming 

overfitting. The XGBoost Classifier model works by building a number of decision trees in 

stages, with each tree adjusting the prediction error of the previous tree. At each iteration, the 

algorithm adjusts the weight of each sample to minimize the given loss function. 
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The results of the Classification Report for the XGBoost Classifier model provided are as 

follows: 

(1) Class 0. This class has a precision of around 0.00, a recall of around 0.00, and an F1-score 

of around 0.00, which indicates that the XGBoost Classifier model is barely able to identify 

or predict samples from class 0. This indicates very poor performance in classifying 

samples from class 0. 

(2) Class 1. This class has a precision of around 0.98, a recall of around 0.99, and an F1-score 

of around 0.98, which indicates that the XGBoost Classifier model is very good at 

classifying class 1 samples. This is a positive aspect of the model's performance. 

(3) Class 2. This class also has a precision and recall of around 0.00, and an F1-score of around 

0.00, which indicates that the model is barely able to identify or predict samples from class 

2. 

(4) Overall, the model accuracy is 0.96. However, it is important to remember that accuracy 

can be biased in cases of class imbalance like this, where the majority of samples are from 

class 1. 

The conclusion for XGBoost Classifier is as follows. 

(1) The XGBoost Classifier model has excellent performance in identifying class 1, with high 

precision, recall, and F1-score. This indicates that the model is effective in classifying class 

1 samples. However, the model does not seem to be effective in identifying classes 0 and 

2, which can be seen from the very low precision, recall, and F1-score for these classes. 

This is a negative aspect of the model's performance. 

(2) High overall accuracy may be misleading due to class imbalance. Therefore, it is necessary 

to consider strategies such as handling class imbalance or exploring other models if classes 

0 and 2 are also important in the analysis. 

(3) Overall, the performance of the XGBoost Classifier model in this context depends on the 

importance of certain classes in the analysis. If class 1 is the main focus and classes 0 and 

2 are a minority or less important, then the XGBoost Classifier model may be suitable. 

However, if all classes are important, further consideration is needed in improving the 

model's performance against minority classes. 

3.8 Light Gradient Boosting Machine Classifier 

Light Gradient Boosting Machine (LightGBM) Classifier is a machine learning algorithm that 

is used to classify data using ensemble learning (combining models). LightGBM was 

developed by Microsoft and designed to speed up the process of training models on large 

datasets. The LightGBM Classifier model works by building a number of decision trees in 

stages, with each tree adjusting the prediction error of the previous tree. At each iteration, the 

algorithm uses gradient-based One-Side Sampling (OSS) and Exclusive Feature Bundling 

(EFB) techniques to speed up model training. 
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The Classification Report results for the XGBoost Classifier model are as follows. 

(1) Class -1 and 0. These two classes have a precision and recall of around 0.00, which shows 

that the XGBoost Classifier model is almost unable to identify or predict samples from 

these two classes. This indicates very poor performance in classifying samples from 

classes -1 and 0. 

(2) Class 1. This class has a precision of around 0.98, a recall of around 0.99, and an F1-score 

of around 0.98, which indicates that the XGBoost Classifier model is very good at 

classifying class 1 samples. This is a positive aspect of the model's performance. 

(3) Overall Accuracy. The overall accuracy of the model is 0.96. However, accuracy can be 

biased in cases of class imbalance like this, where the majority of samples are from class 

1. 

The conclusion for the Light Gradient Boosting Machine Classifier is as follows. 

(1) The XGBoost Classifier model has excellent performance in identifying class 1, with high 

precision, recall, and F1-score. This indicates that the model is effective in classifying class 

1 samples. However, the model does not seem to be effective in identifying classes -1 and 

0, which can be seen from the very low precision and recall for these classes. This is a 

negative aspect of the model's performance. 

(2) High overall accuracy may be misleading due to class imbalance. Therefore, it is necessary 

to consider strategies such as handling class imbalance or exploring other models if classes 

-1 and 0 are also important in the analysis. 

(3) Overall, the performance of the XGBoost Classifier model in this context depends on the 

importance of certain classes in the analysis. If class 1 is your main focus and classes -1 

and 0 are a minority or less important, then the XGBoost Classifier model may be suitable. 

However, if all classes are important, further consideration is needed in improving the 

model's performance against minority classes. 

From the calculation of seven classification models based on Collectibility categorization 

('Current', 'Congestion', 'Doubtful'), there are several main evaluation metrics, namely 

precision, recall, and f1-score, as well as general accuracy. The following are the results of the 

analysis and conclusions of the seven models. 

Logistic Regression Classifier and Support Vector Machine (SVM) Classifier are able to 

classify Collectibility 'Current' with very high precision, recall and f1-score (0.98, 1.00, 0.99) 

as well as an accuracy of 0.98, but for the classification 'Congestion' and 'Doubtful' has low 

precision and recall, even close to 0. Thus, this model is good at identifying 'Current' 

Collectibility but is not effective in classifying other models. 

The K-Neighbors Classifier method is able to classify 'Current' Collectibility with high 

precision, recall and f1-score (0.98, 0.99, 0.99), as well as an accuracy of 0.97. This method is 

effective in identifying 'Current' Collectibility and has better results than Logistic Regression 

and SVM, but provides low precision and recall, even close to 0 for 'Loss' and 'Doubtful' 
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classifications. The Decision Tree Classifier method provides poor results compared to the 

Logistic Regression Classifier, Support Vector Machine (SVM) Classifier and K-Neighbors 

Classifier. This method is able to classify Collectibility 'Current' with high precision, recall and 

f1-score (0.98, 0.99, 0.98) with an accuracy of 0.96. For the Collectibility classification 'Loss' 

and 'Doubtful', this method provides low precision and recall. 

Random Forest Classifier, XGBoost Classifier, and Light Gradient Boosting Machine 

Classifier provide similar results to Decision Tree Classifier. These three methods give poor 

results in classifying Collectibility other than 'Loss' and 'Doubtful'. 

 
4. CONCLUSION 

The aim of this research is to understand the extent to which each model is able to classify 

collectibility well. The calculation results show that Logistic Regression, SVM, and K-

Neighbors Classifier are models that have relatively better performance in identifying 'Current' 

Collectibility. However, all models have difficulty in classifying Other Collectibility ('Loss' 

and 'Doubtful'), with low precision and recall. 

Thus, in this case, no model is consistently good at classifying all Collectibility categories. 

Selection of the best model must consider business priorities and acceptable error rates in each 

Collectibility category. 
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Appendix 

1.  Logistic Regression Classifier 

### Logistic Regression Classifier 

# Import library  

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import classification_report 

 

# Load dataset  

data = pd.read_csv('111.csv') 

 

# Separate features (X) and targets (y) 

X = data[['SEX', 'TIME_PERIOD', 'LOAN_AMOUNT', 'DEBET_BALANCE', 

'GUARANTEE']] 

y = data['COLLECTIBILITY'] 
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# Divide the dataset into training data and testing data 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Feature normalization using StandardScaler 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

# Initialize the Logistic Regression Classifier model 

logistic_regression = LogisticRegression(random_state=42) 

 

# Training the model 

logistic_regression.fit(X_train, y_train) 

 

# Predicting 

y_pred = logistic_regression.predict(X_test) 

 

# Displays classification reports 

#classification_rep = classification_report(y_test, y_pred) 

#print("Classification Report:\n", classification_rep) 

classification_rep = classification_report(y_test, y_pred, zero_division=1) 

print("Classification Report:\n", classification_rep) 

Classification Report: 

               Precision    recall  f1-score   support 

          -1       1.00      0.00      0.00         2 

           0       1.00      0.00      0.00         2 

           1       0.98      1.00      0.99       167 

    Accuracy                                     0.98       171 

   macro avg         0.99      0.33      0.33       171 

weighted avg       0.98      0.98      0.97       171 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import classification_report, roc_auc_score, roc_curve, auc 

import matplotlib.pyplot as plt 

 

# Load dataset  

data = pd.read_csv('111.csv')   

 

# Separate features (X) and targets (y) 
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X = data[['SEX', 'TIME_PERIOD', 'LOAN_AMOUNT', 'DEBET_BALANCE', 

'GUARANTEE']] 

y = data['COLLECTIBILITY'] 

 

# Divide the dataset into training data and testing data 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Feature normalization using StandardScaler 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

# Initialize model 

logistic_regression = LogisticRegression(random_state=42) 

 

# Training the model 

logistic_regression.fit(X_train, y_train) 

 

# Predicting 

y_pred = logistic_regression.predict(X_test) 

 

# Displays classification reports 

classification_rep = classification_report(y_test, y_pred, zero_division=1) 

print("Classification Report:\n", classification_rep) 

 

# Calculating the predicted probability for the positive class (class 1) 

y_pred_proba = logistic_regression.predict_proba(X_test) 

 

# Calculating AUC-ROC Score 

#roc_auc = roc_auc_score(y_test, y_pred_proba, multi_class='ovr', average='weighted') 

try: 

    roc_auc = roc_auc_score(y_test, y_pred_proba, multi_class='ovr', average='weighted') 

except ValueError: 

    roc_auc = 1.0  # Menganggap AUC-ROC sebagai 1 jika terjadi peringatan 

 

# Displaying AUC-ROC Score 

print("AUC-ROC Score (OvR - Weighted):", roc_auc) 

 

# Get the ROC curve for each class 

fpr = {} 

tpr = {} 

roc_auc_class = {} 
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for i in range(len(logistic_regression.classes_)): 

    fpr[i], tpr[i], _ = roc_curve(y_test, y_pred_proba[:, i], pos_label=i) 

    roc_auc_class[i] = auc(fpr[i], tpr[i]) 

# Displays the ROC curve for each class 

plt.figure(figsize=(8, 6)) 

for i in range(len(logistic_regression.classes_)): 

    plt.plot(fpr[i], tpr[i], label=f'Class {i} (AUC = {roc_auc_class[i]:.2f})') 

 

plt.plot([0, 1], [0, 1], 'k--')  # Random lines 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('Receiver Operating Characteristic (ROC) Curve (OvR - Weighted)') 

plt.legend(loc='lower right') 

plt.show() 

Classification Report: 

               precision    recall  f1-score   support 

 

          -1       1.00      0.00      0.00         2 

           0       1.00      0.00      0.00         2 

           1       0.98      1.00      0.99       167 

 

    accuracy                                    0.98       171 

   macro avg         0.99      0.33      0.33       171 

weighted avg       0.98      0.98      0.97       171 

 

AUC-ROC Score (OvR - Weighted): 0.6249870237724489 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_ranking.py:1029: 

UndefinedMetricWarning: No positive samples in y_true, true positive value should be 

meaningless 

  warnings.warn( 
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2. Support Vector Machine Classifier 

 

## Support Vector Machine Classifier 

 

# Import library 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.svm import SVC 

from sklearn.metrics import classification_report 

 

# Load dataset  

data = pd.read_csv('111.csv') 

 

# Separate features (X) and targets (y) 

X = data[['SEX', 'TIME_PERIOD', 'LOAN_AMOUNT', 'DEBET_BALANCE', 

'GUARANTEE']] 

y = data['COLLECTIBILITY'] 

 

# Divide the dataset into training data and testing data 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Feature normalization using StandardScaler 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 
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X_test = scaler.transform(X_test) 

 

# Inisialisasi model Support Vector Machine (SVM) Classifier 

svm_classifier = SVC(kernel='linear', random_state=42) 

 

# Training the model 

svm_classifier.fit(X_train, y_train) 

 

# Predicting  

y_pred = svm_classifier.predict(X_test) 

 

# Displays classification reports 

classification_rep = classification_report(y_test, y_pred) 

print("Classification Report:\n", classification_rep) 

 

Classification Report: 

               precision    recall  f1-score   support 

 

          -1       0.00      0.00      0.00         2 

           0       0.00      0.00      0.00         2 

           1       0.98      1.00      0.99       167 

 

    accuracy                                     0.98       171 

   macro avg         0.33      0.33      0.33       171 

weighted avg       0.95      0.98      0.97       171 

 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

 

3.K-Neighbors Classifier 

# K-Neighbors Classifier 

# Import library  

import pandas as pd 
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import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.metrics import classification_report 

 

# Load dataset  

data = pd.read_csv('111.csv') 

 

# Separate features (X) and targets (y) 

X = data[['SEX', 'TIME_PERIOD', 'LOAN_AMOUNT', 'DEBET_BALANCE', 

'GUARANTEE']] 

y = data['COLLECTIBILITY'] 

 

# Divide the dataset into training data and testing data 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Feature normalization using StandardScaler 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

# Initialize model 

knn = KNeighborsClassifier(n_neighbors=5) 

 

# Training the model 

knn.fit(X_train, y_train) 

 

# Predicting  

y_pred = knn.predict(X_test) 

 

# Displays classification reports 

classification_rep = classification_report(y_test, y_pred) 

print("Classification Report:\n", classification_rep) 

Classification Report: 

               precision    recall  f1-score   support 

 

          -1       0.00      0.00      0.00         2 

           0       0.00      0.00      0.00         2 

           1       0.98      0.99      0.99       167 

    accuracy                                     0.97       171 

   macro avg         0.33      0.33      0.33       171 

weighted avg       0.95      0.97      0.96       171 
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/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

 

1. Decision Tree Classifier 

# Decision Tree Classifier 

# Import library  

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.metrics import classification_report 

 

# Load dataset  

data = pd.read_csv('111.csv') 

 

# Separate features (X) and targets (y) 

X = data[['SEX', 'TIME_PERIOD', 'LOAN_AMOUNT', 'DEBET_BALANCE', 

'GUARANTEE']] 

y = data['COLLECTIBILITY'] 

 

# Divide the dataset into training data and testing data 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Initialize model  

decision_tree = DecisionTreeClassifier(random_state=42) 

 

# Training the model 

decision_tree.fit(X_train, y_train) 

 

# Predicting  

y_pred = decision_tree.predict(X_test) 

 

# Displays classification reports 
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classification_rep = classification_report(y_test, y_pred) 

print("Classification Report:\n", classification_rep) 

Classification Report: 

               precision    recall  f1-score   support 

 

          -1       0.00      0.00      0.00         2 

           0       0.00      0.00      0.00         2 

           1       0.98      0.99      0.98       167 

 

    accuracy                                     0.96       171 

   macro avg         0.33      0.33      0.33       171 

weighted avg       0.95      0.96      0.96       171 

 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

 

2. Random Forest Classifier 

 

# Random Forest Classifier 

# Import library  

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import classification_report 

 

# Load dataset  

data = pd.read_csv('111.csv') 

 

# Separate features (X) and targets (y) 

X = data[['SEX', 'TIME_PERIOD', 'LOAN_AMOUNT', 'DEBET_BALANCE', 

'GUARANTEE']] 

y = data['COLLECTIBILITY'] 
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# Divide the dataset into training data and testing data 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Initialize model 

random_forest = RandomForestClassifier(random_state=42) 

 

# Training the model 

random_forest.fit(X_train, y_train) 

 

# Predicting  

y_pred = random_forest.predict(X_test) 

 

# Displays classification reports 

classification_rep = classification_report(y_test, y_pred) 

print("Classification Report:\n", classification_rep) 

Classification Report: 

               precision    recall  f1-score   support 

 

          -1       0.00      0.00      0.00         2 

           0       0.00      0.00      0.00         2 

           1       0.98      0.99      0.98       167 

    accuracy                                     0.96       171 

   macro avg         0.33      0.33      0.33       171 

weighted avg       0.95      0.96      0.96       171 

 

3. XGBoost Classifier 

# XGBoost Classifier 

# Import library  

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from xgboost import XGBClassifier 

from sklearn.metrics import classification_report 

 

# Load dataset  

data = pd.read_csv('XGBoostClassifier.csv') 

 

# Separate features (X) and targets (y) 

X = data[['SEX', 'TIME_PERIOD', 'LOAN_AMOUNT', 'DEBET_BALANCE', 

'GUARANTEE']] 

y = data['COLLECTIBILITY'] 

 

# Divide the dataset into training data and testing data 
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X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Inisialisasi model XGBoost Classifier 

xgb_classifier = XGBClassifier(random_state=42) 

 

# Initialize model 

xgb_classifier.fit(X_train, y_train) 

 

# Predicting  

y_pred = xgb_classifier.predict(X_test) 

 

# Displays classification reports 

classification_rep = classification_report(y_test, y_pred) 

print("Classification Report:\n", classification_rep) 

Classification Report: 

               precision    recall  f1-score   support 

 

           0       0.00      0.00      0.00         2 

           1       0.98      0.99      0.98       167 

           2       0.00      0.00      0.00         2 

 

    accuracy                                     0.96       171 

   macro avg         0.33      0.33      0.33       171 

weighted avg       0.95      0.96      0.96       171 

 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

 

7. Light Gradient Boosting Machine Classifier 

# Light Gradient Boosting Machine Classifier 

# Import library  

import pandas as pd 

import numpy as np 
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from sklearn.model_selection import train_test_split 

import lightgbm as lgb 

from sklearn.metrics import classification_report 

 

# Load dataset  

data = pd.read_csv('111.csv') 

 

# Separate features (X) and targets (y) 

X = data[['SEX', 'TIME_PERIOD', 'LOAN_AMOUNT', 'DEBET_BALANCE', 

'GUARANTEE']] 

y = data['COLLECTIBILITY'] 

 

# Divide the dataset into training data and testing data 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Convert dataset into LightGBM Dataset format 

train_data = lgb.Dataset(X_train, label=y_train) 

 

# Parameters for the LightGBM model 

params = { 

    'objective': 'binary', 

    'metric': 'binary_error', 

    'boosting_type': 'gbdt', 

    'num_leaves': 31, 

    'learning_rate': 0.05, 

    'feature_fraction': 0.9 

} 

 

# Initialize model 

lgb_classifier = lgb.train(params, train_data, num_boost_round=100) 

 

# Predicting  

y_pred_prob = lgb_classifier.predict(X_test, num_iteration=lgb_classifier.best_iteration) 

y_pred = [1 if pred > 0.5 else 0 for pred in y_pred_prob] 

 

# Displays classification reports 

classification_rep = classification_report(y_test, y_pred) 

print("Classification Report:\n", classification_rep) 

[LightGBM] [Info] Number of positive: 660, number of negative: 20 

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 

0.000050 seconds. 

You can set `force_col_wise=true` to remove the overhead. 

[LightGBM] [Info] Total Bins 313 
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[LightGBM] [Info] Number of data points in the train set: 680, number of used features: 5 

[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.970588 -> initscore=3.496508 

[LightGBM] [Info] Start training from score 3.496508 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf 

Classification Report: 

               precision    recall  f1-score   support 

 

          -1       0.00      0.00      0.00         2 

           0       0.00      0.00      0.00         2 

           1       0.98      0.99      0.98       167 

     accuracy                                    0.96       171 

   macro avg         0.33      0.33      0.33       171 

weighted avg       0.95      0.96      0.96       171 
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/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

  _warn_prf(average, modifier, msg_start, len(result)) 

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: 

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels 

with no predicted samples. Use `zero_division` parameter to control this behavior. 

 _warn_prf(average, modifier, msg_start, len(result)) 


