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Abstract 

This paper evaluates the one-day-ahead Value at Risk (VaR) and Expected Shortfall (ES) of two Islamic stock 

indexes, namely Dow Jones and FTSE. The analysis takes into consideration the presence of volatility clustering, 

volatility asymmetry, and volatility persistence in the data. Four GARCH-type models, including two fractionally 

integrated models, were assessed, assuming three alternative distributions (normal, Student-t, and skewed Student-

t distributions). The paper considered four GARCH-type models, and the AR (1) - FIEGARCH model under a 

skewed Student-t distribution was found to perform the best among them. We have computed one-day ahead VaR 

and (ES) for both short and long trading positions. Back testing results show very clearly that the skewed Student-

t FIEGARCH model provides the best results for both short and long VaR estimations. 
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1. INTRODUCTION 

The significance of managing risk has grown exponentially for both managers and financial 

decision-makers. Making informed decisions at the opportune moment necessitates a deep 

understanding of financial market dynamics. Investors must keep abreast of market evolution, 

identify risk factors, and employ effective risk measurement strategies to safeguard against 

potential losses. A robust risk measurement model should inherently account for the stylized 

facts of financial assets. Value-at-Risk (VaR) has emerged as a widely adopted financial risk 

measure, quantifying the potential monetary loss within a specific holding period. VaR's 

straightforward methodology empowers managers and investors to govern their portfolio risk 

effectively, enabling optimal decision-making and the formulation of appropriate risk 

management policies. Consequently, VaR has garnered considerable interest from investors, 

portfolio managers, and financial institution supervisors, as underscored by the Basle 

Committee on Banking Supervision in 1996. Researchers and practitioners (Dimson and 

Marsh, 1995, 1997; Cordell and King, 1995; Gjerde and Semmen, 1995; Berger et al., 1995) 

recognize the value of VaR in determining the amount of resources institutions need to allocate 

as a guarantee against their risk exposure. The literature features a plethora of VaR methods, 

emphasizing the importance of evaluating and selecting the most suitable one based on specific 

portfolio characteristics. An effective risk measure model must consider the stylized facts of 

financial asset series, including volatility clustering, fat tails, skewness, and long-range 

memory phenomena. Since the introduction of the ARCH model by Engle in 1982, numerous 



  
  
 
 

DOI: 10.5281/zenodo.10817271 

222 | V 1 9 . I 0 3  

GARCH-type models have been developed to address the volatility clustering phenomenon. 

These models enable the forecasting of future variance values by incorporating past squared 

deviations and variance values. Recent empirical studies (Mabrouk 2017, Mabrouk and Aloui, 

2010; Aloui, 2008; Angelidis et al., 2007; Bali and Theodossiou, 2007; Degiannakis, 2004; 

Kang and Yoon, 2007; Marzo and Zagalia, 2007; So and Yu, 2006; Sriananthakumar and 

Silvapulle, 2003; Tang and Shieh, 2006; Wu and Shieh, 2007; Mabrouk 2016) assert that 

financial time series data exhibit long-range memory in variance behavior, fat tails, and 

skewness. In light of these findings, selecting an appropriate VaR model necessitates a correct 

specification of the chosen GARCH-type model. The studies conducted by Bouoiyour and 

Selmi (2016); Katsiampa (2017), as well as Charle and Darne-Lemna (2018), involve 

comparing certain GARCH-type models without simultaneously examining the relevant 

properties of long memory and asymmetric effects associated with financial asset return series. 

Conversely, Baur and Dimpfl (2018); Charfeddine and Maouchi (2018); Peng et al. (2018); and 

Caporale and Zekokh (2019) attempted to select the most appropriate model or a superior set 

of GARCH volatility models for examining various financial assets but failed to address 

properties relevant to both long memory and asymmetric effects with different error 

distributions. In this current work, our aim is to compare four models within the GARCH class, 

taking into consideration both leverage effects and long memory. 

The recognition of financial data characteristics, as highlighted by the literature, underscores 

the importance of utilizing these models for accurate risk measurement and management.  In 

this study, the focus is on exploring the dynamics of two Islamic stock indexes by employing 

Value-at-Risk (VaR) and Expected Shortfall (ES) calculations based on GARCH-type models. 

The researchers delve into assessing four alternative GARCH-type models, including two 

fractionary integrated models, with the specific aim of determining whether a more accurate 

estimation of one-day ahead VaR and ES can be achieved when time series exhibit long 

memory in the variance dynamics. The paper draws on prior empirical studies and takes into 

consideration three distributions: normal, Student-t, and skewed Student-t distributions. The 

latter two distributions account for various stylized facts in financial time series data behavior, 

such as excess kurtosis, heavy tails, and skewness. The study ultimately computes VaR and ES 

for both short and long trading positions, evaluating their performance across in-sample and 

out-of-sample periods. By incorporating GARCH-type models and alternative distributions, 

the researchers aim to provide insights into effective risk management strategies tailored to the 

characteristics of Islamic stock indexes. Finally, we computed the VaR and ES for both short 

and long trading positions then we assess their performance for both in-sample and out-of-

sample periods.  

The subsequent sections of our paper are organized as follows. In Section 2, we outline the four 

GARCH-type models utilized in our study and elucidate the error's density models, 

encompassing normal, Student-t, and skewed Student-t distributions. Section 3 is dedicated to 

introducing the Value-at-Risk (VaR) model, detailing how it can be computed using the 

specified GARCH-type models, and highlighting the statistical accuracy of VaR estimations 

derived from these models. Empirical findings are expounded in sections 4 and 5, shedding 

light on the practical application of the proposed models. Finally, Section 6 provides a 
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conclusion, summarizing the key insights gleaned from our study. This structure allows for a 

comprehensive exploration of the GARCH-type models, their associated error's density 

models, and the efficacy of VaR estimations, culminating in a cohesive understanding of the 

dynamics governing the Islamic stock indexes under consideration. 

 

2. THE GARCH-TYPE MODELS 

2.1 GARCH Model 

The GARCH model, an extension of the ARCH model proposed by Engle (1982) and 

generalized by Bollerslev (1986), provides a powerful framework for modeling the volatility 

of financial time series. The Generalized ARCH (GARCH) model is conceptualized as an 

infinite ARCH, offering a streamlined approach to diminish the number of parameters involved 

in the ARCH model. The GARCH (p, q) model is mathematically expressed as: 

σt
2 = ω + ∑ αi

q

i=1

εt−i
2 + ∑ βj

p

i=1

σt−j
2                                                                       (1) 

The lag operator allows us to specify GARCH model as: 

σt
2 = ω + α(L)εt

2 + β(L)σt
2                                                                                (2) 

Where: 

 σt
2 represents the conditional variance at time t, 

 ω is the constant term, 

 αi and βj are the model parameters, 

 ϵt−i
2  denotes the squared innovation at time t − i, and 

 σt−j
2  Is the conditional variance at timet − j. 

This formulation allows for a flexible representation of volatility dynamics by considering the 

impact of past squared innovations and past conditional variances on the current conditional 

variance. The GARCH model serves as a fundamental building block for more intricate 

GARCH-type models, contributing significantly to the modeling of financial market volatility. 

Bollerslev (1986) has shown that the GARCH model is a short memory model since its 

autocorrelation function decay slowly with a hyperbolic rate. 

2.2 The Exponential GARCH Model 

The exponential GARCH (EGARCH) is one model that allows for the asymmetric effect of 

news. Under EGARCH, the logged conditional variance is a function of its own lagged values 

as well as of the error terms. The EGARCH model has been developed by Nelson (1991) to 

capture the leverage effects in the volatility. By leverage effect we mean that the falling returns 

adds to the volatility in the market in comparison to the positive returns. The decreasing returns 
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reduces the equity value which further increases the volatility in the equity markets, as studied 

by Black (1976). 

𝑙𝑜𝑔ℎ𝑡 =   𝛼0 +  𝛼1 (
|𝜀𝑡−1|

ℎ𝑡−1
− √

2

𝜋
) +  𝛿

𝜀𝑡−1

ℎ𝑡−1 
+  𝛽1 ℎ𝑡−1 +  𝜆𝜀𝑡−1

2                      (3)          

Where δ is an asymmetry coefficient and the presence of leverage effect will be there when 

δ < 0 and found to be significant. The α1  and β1 are the ARCH terms and the GARCH terms 

respectively, where the ARCH term exhibits the impact of the news or information on the 

conditional volatility and the GARCH term exhibits the persistency level in the volatility.  

2.3 The Fractional Integrated GARCH Model   

Given the prevalent observation that financial time series often exhibit a long memory process 

in variance dynamics, Baillie, Bollerslev, and Mikkelsen (1996) introduced the Fractional 

Integrated GARCH (FIGARCH) model to aptly capture this characteristic. This GARCH-type 

model introduces a fractional parameter d that enables the model to differentiate between short 

memory and infinite long memory processes. The FIGARCH model proves particularly adept 

at discerning the varying degrees of memory in conditional variance behavior. Formally, the 

FIGARCH(p, d, q) process is specified as follows: 

σt
2 = ω + ∑  

p

i=1

αi (
i − 1

i
)

d

ϵt−i
2 + ∑  

q

j=1

βjσt−j
2                                                    (4)  

Where: 

 σt
2 is the conditional variance at time t, 

 ω represents the constant term, 

 αi and βj are the model parameters, 

 ϵt−i
2  denotes the squared innovation at time t − i, 

 σt−j
2  is the conditional variance at time t − j, and 

 d is the fractional parameter that characterizes the degree of long memory in the process. 

This formulation allows the FIGARCH model to effectively capture the nuanced aspects of 

both short and long memory in the conditional variance behavior, making it a valuable tool for 

modeling financial time series with distinct memory patterns. 

2.4 The Fractional Integrated Exponential GARCH Model 

Introduced by Bollerslev and Mikkelsen (1996), the Fractional Integrated Exponential GARCH 

(FIEGARCH) model is designed to provide a nuanced representation of volatility dynamics, 

incorporating both fractional integration and exponential smoothing.  
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The FIEGARCH (p, d, q) model is expressed as follows: 

σt
2 = ωe

(∑  
p
i=1  αi(

i−1
i

)
d

ϵt−i
2 +∑  

q
j=1  βjσt−j

2 )
                                                    (5)   

Where: 

 σt
2 denotes the conditional variance at time t, 

 ω is the constant term, 

 αi and βj represent the model parameters, 

 ϵt−i
2  signifies the squared innovation at time t − i, 

 σt−j
2  is the conditional variance at time t − j, 

 d Is the fractional parameter that characterizes the degree of long memory in the process. 

The FIEGARCH model incorporates the exponential term in the conditional variance equation, 

providing a smoothing effect that can be valuable in capturing long memory patterns in 

financial time series data. This model offers a flexible framework for simultaneously 

addressing both fractional integration and exponential smoothing in the context of volatility 

modeling. 

2.5 The Error’s Density Models  

In the context of error density models, the paper considers different distributions to account for 

various characteristics observed in financial time series data. Assuming the random variable 𝑧 

follows a standard normal distribution𝑁(0,1), the log-likelihood of the normal distribution 

Norm 𝐿 is expressed as: 

𝐿Norm = −
1

2
∑  

𝑇

𝑡=1

[ln(2𝜋) + ln(𝜎𝑡
2) + 𝑧𝑡

2]                                                      (6)   

Where 𝑇 is the number of observations. However, recognizing the inadequacy of assuming 

normality for economic time series, the paper introduces alternative distributions. To 

accommodate fat-tailed residuals, the Student-t distribution is incorporated. If the random 

variable 𝑧 follows a Student-t distributionST(0,1, 𝜈), the log-likelihood function Stud 𝐿 is 

defined as: 

𝐿Stud = 𝑇 [ln Γ (
𝜈 + 1

2
) − ln Γ (

𝜈

2
) −

1

2
ln [𝜋(𝜈 − 2)]] −

1

2
∑  

𝑇

𝑡=1

  [ln (𝜎𝑡
2) + (1 + 𝜈)ln (1 +

𝑧𝑡
2

𝜎𝑡
2(𝜈 − 2)

)]

                  (7)                   

Where2 < 𝜈 ≤ ∞, andΓ(.)is the gamma function. The Student − t distribution Introduces 

an additional parameter 𝜈 representing the degrees of freedom, capturing the fat-tailed nature 

of the density. 
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To jointly account for excess skewness and kurtosis, the paper includes the skewed Student-t 

distribution proposed by Lambert and Laurent (2001). If 𝑧 follows a skewed Student-t 

distributionSKST(0,1, 𝑘, 𝜈), the log-likelihood SkStL is defined as: 

𝐿SkSt = 𝑇 [ln Γ (
𝜈 + 1

2
) − ln Γ (

𝜈

2
) −

1

2
ln [𝜋(𝜈 − 2)] + ln (

2

𝑘 +
1
𝑘

) + ln (𝑠)] −

1

2
∑  

𝑇

𝑡=1

  [ln (𝜎𝑡
2) + (1 + 𝜈)ln [1 +

(1 + (𝑠𝑧𝑡 + 𝑚))
2

(𝜈 − 2)𝑘−2𝐼𝑡
]]

  (8)   

Where 𝐼𝑡 = 1 if 𝑧𝑡 ≥
𝑚

𝑠
 or 𝐼𝑡 = −1 if𝑧𝑡 <

𝑚

𝑠
. Here, 𝑘 is an asymmetry parameter, and 𝑚 =

𝑚(𝑘, 𝜈) and 𝑠 = √𝑠2(𝑘, 𝜈) are the mean and standard deviation of the skewed Student-t 

distribution. 

These error density models provide a comprehensive framework to capture the distributional 

characteristics of financial time series data, considering normal, Student-t, and skewed Student-

t distributions. The choice among these models depends on the empirical characteristics 

observed in the data. 

2.6 The Value-at-risk and the Expected Shortfall  

In this sub-section, the paper proceeds to present the values of Expected Shortfall (ES) and 

Value-at-Risk (VaR) utilizing a Fractional Integrated Exponential GARCH (FIEGARCH) 

model with skewed Student-t distribution for innovations. The FIEGARCH model, 

incorporating both fractional integration and exponential smoothing, is employed to capture 

the intricate dynamics of volatility. Furthermore, the use of skewed Student-t distribution for 

innovations allows for the modeling of asymmetry, fat tails, and excess skewness in the 

financial time series data. 

The Expected Shortfall (ES) and Value-at-Risk (VaR) are key metrics in risk management, 

providing insights into the potential downside risks associated with a given portfolio or 

financial instrument. These metrics play a crucial role in decision-making processes by 

quantifying the level of risk exposure. 

The utilization of the FIEGARCH model with skewed Student-t distribution underscores a 

comprehensive approach to risk assessment, considering both the long memory in variance 

dynamics and the stylized facts associated with financial time series behavior. The ensuing 

analysis is poised to offer valuable insights into the risk characteristics of the financial data 

under consideration. 

The formulas for calculating Expected Shortfall (ES) and Value-at-Risk (VaR) using a 

Fractional Integrated Exponential GARCH (FIEGARCH) model with skewed Student-t 

distribution for innovations. 
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Expected Shortfall (ES) Formula: 

The Expected Shortfall at a certain confidence level α for a distribution can be calculated by 

taking the conditional expectation of losses exceeding the Value-at-Risk at the same confidence 

level. Mathematically, ES is expressed as: 

ESα = E[L ∣ L ≥ VaRα]                                                                                             (9)   

Where L represents the loss distribution an ↓  τRα is the Value-at-Risk at confidence levelα. 

Value-at-Risk (VaR) Formula: 

The Value-at-Risk at a certain confidence level α for a distribution represents the maximum 

potential loss within that confidence level. For a skewed Student-t distribution, VaR can be 

computed as: 

VaRα = −s ⋅ √
ν − 2

ν
⋅ tν,α                                                                                            (10)     

Where s is the standard deviation, ν is the degrees of freedom parameter in the skewed Student-

t distribution, and tν,α is the α-quantile of the Student-t distribution with ν degrees of freedom. 

2.7 Test of Accuracy of VaR Model  

Back testing the accuracy for the estimated VaR is crucial. The VaR quality estimation depends 

on the methodology of computation of VaR. Therefore, to investigate the VaR performance we 

have computed the empirical failure rates for both short and long trading positions. The 

prescribed probability is ranging from 0.25% to 5%. In reality, the failure rate is the number of 

times in which returns exceed (in absolute value) the forecasted VaR. If the model is said to be 

correctly specified, when the failure rate is equal to the specified VaR’s level. In our study, the 

back testing VaR is based on Kupiec (1995) test and the Dynamic Quantile (DQ) test of Engle 

and Manganelli (2002). In order to test the accuracy and to evaluate the performance of the 

model-based VaR estimates, Kupiec (1995) provided a likelihood ratio test (𝐿𝑅𝑈𝐶) for testing 

whether the failure rate of the model is statistically equal to the expected one (unconditional 

coverage). Consider that 𝑁 = ∑ 𝐼𝑡
𝑇
𝑡=1  is the number of exceptions in the sample size T. Then, 

 It+1 = {
1   if    rt+1 < VaRt+1|t(α)

0   if    rt+1 ≥ VaRt+1|t(α)
                                                               (11) 

Follows a binomial distribution,  𝑁~𝐵(𝑇, 𝛼). If 𝑝 = 𝐸(
𝑁

𝑇
) is the expected exception frequency 

(i.e. the expected ratio of violations), then the hypothesis for testing whether the failure rate of 

the model is equal to the expected one is expressed as follows:  H0: α = α0. α0 Is the prescribed 

VaR level. Thus, the appropriate likelihood ratio statistic in the presence of the null hypothesis 

is given by: 

LRuc = −2log{α0
N(1 − α0)T−N} + 2log {(

N

T
)N(1 − (

N

T
))T−N}             (12) 
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Under the null hypothesis, LRuc has a 𝜒2(1) as an asymptotical distribution. Thus, a preferred 

model for VaR prediction should provide the property that the unconditional coverage 

measured by 𝑝 = 𝐸(
𝑁

𝑇
) equals the desired coverage level p0. 

Engle and Manganelli developed the Dynamic Quantile (DQ) test building upon a linear 

regression model based on the process of centered hit function: 

δt
α = Hitt(α) ≡ I(yt < − VaRt(α) ∣ Ωt−1) − α                                         (13)  

Conditional on pre-sample values, the dynamic of the hit function is modeled as: 

δt
α = θ0 + ∑  

p

i=1

θiδt=i
(α)

+ ∑  

m

τ=1

ϑiδt=i
(τ)

+ μt                                                      (14)   

Where μt is an IID process. The DQ test is defined under the hypothesis that the regressors in 

Eq. (27) have no explanatory power: 

H0 = Ψ = (θ0, θ1, … , θp, ϑ0, ϑ1, … , ϑm)
T

= 0                                          (15)  

For back testing, the DQ test statistic, in association with Wald statics, is as follows: 

DQ =
Ψ̂TXTΨ̂

α(1 − α)
⟶

ℓ
χ1+p+m

2                                                                                (16)   

Where X denotes he regressors matrix in Eq. (27) 

 

3. DATA AND PRELIMINARY ANALYSIS 

The data consist of daily closing prices for two stocks indexes which are Islamic Dow Jones 

and the Islamic FTSE. The sample period of our study and the number of observation are 

provided in the table below 

Table 1: Data 

𝒔𝒕𝒐𝒄𝒌 𝒊𝒏𝒅𝒆𝒙 𝒔𝒂𝒎𝒑𝒍𝒆  𝒑𝒆𝒓𝒊𝒐𝒅 𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 

𝐼𝑠𝑙𝑎𝑚𝑖𝑐 𝐷𝑂𝑊 𝐽𝑂𝑁𝐸𝑆 01/22/2007 − 04/01/2016 2329 

𝐼𝑠𝑙𝑎𝑚𝑖𝑐 𝐹𝑇𝑆𝐸 01/22/2007 − 04/01/2016 2206 

For each series, the log-returns is expressed (in %) as, 

rt = 100 ∗ ln (
St

St−1
)                                                                                        (17)   
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Table 2: Descriptive Statistics 

𝒔𝒕𝒐𝒄𝒌 𝒊𝒏𝒅𝒆𝒙 𝑴𝒆𝒂𝒏 𝑴𝒆𝒅𝒊𝒂𝒏𝒆 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝑺𝑫 𝑺𝒌𝒆𝒘𝒏𝒆𝒔𝒔 𝑲𝒖𝒓𝒕𝒐𝒔𝒊𝒔 
𝑱𝒂𝒓𝒒𝒖𝒆
− 𝑩é𝒓𝒂 

𝐼
− 𝐷𝑂𝑊 𝐽𝑂𝑁𝐸𝑆 

0.0121 0.0649 9.77 −8.18 1.138 −0.311 9.84 9443 

𝐼 − 𝐹𝑇𝑆𝐸 0.0223 0.0541 4.07 −11.32 0.842 −1.508 18.38 31887 

Notes: S.D. is the standard deviation. For all the time series, the descriptive statistics for cash 

daily returns are expressed in percentage.  

As it’s shown on the table above, these statistics provide insights into the average returns, 

variability, skewness, and kurtosis of the daily returns for the Islamic Dow Jones and FTSE 

stock indexes during the specified sample period. The negative skewness and higher kurtosis 

suggest non-normality and the potential presence of extreme values in the return distributions. 

The same conclusion is confirmed by the Jarque – Bera statistic which indicates the non-

normality of our time series1.  

Graphical Analysis 

 

The graphical analysis presented in Figure 1 reveals a characteristic known as volatility 

clustering in all sample return series. The presence of volatility clustering is evident from the 

graphical representation. This phenomenon is characterized by periods of low volatility 

followed by periods of high volatility. During periods of low volatility, the returns appear to be 

relatively stable and close to each other. Conversely, during periods of high volatility, the 

returns exhibit larger fluctuations, indicating increased market uncertainty and variability. The 

observed volatility clustering confirms the presence of the Autoregressive Conditional 

Heteroskedasticity (ARCH) effect in the return series. ARCH effect implies that the volatility 

(or variance) of the returns is not constant over time but varies with past squared returns. 

Volatility clustering is a key stylized fact in financial time series data, and its observation aligns 

with empirical findings in financial markets. Investors and analysts often use this information 

to make informed decisions during periods of heightened market uncertainty. 
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3.1 Unit Root and Stationarity Tests  

In the analysis of the Islamic Dow Jones (I-DOW JONES) and Islamic FTSE (I-FTSE) stock 

indexes, unit root tests (Augmented Dickey-Fuller and Phillips-Perron) and stationarity tests 

(Kwiatkowski-Phillips-Schmidt-Shin) were conducted. The results are presented in Table 3: 

Table 3: ADF, PP and KPSS Tests 

 𝑨𝑫𝑭 𝑷𝑷 𝑲𝑷𝑺𝑺 

𝐼 − 𝐷𝑂𝑊 𝐽𝑂𝑁𝐸𝑆 −48.81 −68.53 0.3997 

𝐼 − 𝐹𝑇𝑆𝐸 −50.55 −73.64 0.2617 

Notes: MacKinnon’s 1% critical value is –3.435 for the ADF and PP tests. The KPSS critical 

value is 0.739 at the 1% significance level. 

As it is given by the table above, the ADF and PP tests both reject the null hypothesis of the 

presence of a unit root. The critical values for both tests are well below the test statistics, 

indicating strong evidence against the existence of a unit root. This implies that the stock index 

returns time series are stationary after differencing. The KPSS test supports the stationarity of 

the stock index returns time series. The test statistic is less than the critical value, leading to the 

rejection of the null hypothesis of non-stationarity. The KPSS test complements the ADF and 

PP tests by providing evidence in favor of stationarity. The combined results from the ADF, PP, 

and KPSS tests indicate that the stock index returns time series for both I-DOW JONES and I-

FTSE are stationary. This suggests that after differencing, the time series exhibit stable 

statistical properties, which is essential for reliable time series analysis and modeling. 

3.2 Long Memory Tests   

The assessment of long-range memory is crucial in understanding the persistence and memory 

characteristics of financial time series data. The study employed two long-memory tests, 

namely the log-periodogram regression (GPH) of Geweke and Porter-Hudak (1983) and the 

Gaussian semi-parametric estimate (GSP) of Robinson and Henry (1998). The results are 

presented in Table 4: 

Table 4: Long Range Memory Tests 

 |𝑟𝑡| 𝑟𝑡
2 

 𝐼 − 𝐷𝑂𝑊 𝐽𝑂𝑁𝐸𝑆 𝐼 − 𝐹𝑇𝑆𝐸 𝐼 − 𝐷𝑂𝑊 𝐽𝑂𝑁𝐸𝑆 𝐼 − 𝐹𝑇𝑆𝐸 

𝐺𝑃𝐻  𝑇𝑒𝑠𝑡  

0.38 

0.42 

0.41 

   

𝑚 = 𝑇0.5 0.36 

0.33 

0.34 

0.39 

0.37 

0.35 

0.29 

0.30 

0.228 

𝑚 = 𝑇0.6 

𝑚 = 𝑇0.7 

𝐺𝑆𝑃 𝑇𝑒𝑠𝑡     

𝑚 =
𝑇

2
 

0.291 

0.351 

0.472 

0.266 

0.312 

0.398 

0.229 

0.279 

0.364 

0.202 

0.291 

0.346 
𝑚 =

𝑇

4
 

𝑚 =
𝑇

8
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The table above displays results of long memory tests including two tests which are GPH test 

for three BANDWITH  𝑚 = 𝑇0.5;  𝑚 = 𝑇0.6 𝑒𝑡 𝑚 = 𝑇0.7 and GSP for three BANDWITH m =
T

2
; m =

T

4
 et m =

T

8
 . As it is shown, the GPH test results for different bandwidths (m) 

consistently reject the null hypothesis of short memory.The rejection of the null hypothesis 

indicates the presence of long-range memory in the time series of absolute returns and daily 

squared volatility returns for I-DOW JONES and I-FTSE. Similar to the GPH test, the GSP test 

rejects the null hypothesis of short memory for different bandwidths (m).The rejection of the 

null hypothesis supports the conclusion that the time series are governed by a long memory 

process. The results of both GPH and GSP tests consistently suggest the presence of long-range 

memory in the time series of absolute returns and daily squared volatility returns for I-DOW 

JONES and I-FTSE. These findings motivate the exploration of fractionally integrated models 

to better capture the long memory dynamics observed in the data. 

 

4. EMPIRICAL RESULTS  

4.1. Estimates GARCH-type Models 

Results of GARCH, EGARCH, FIGARCH and FIEGARCH models under normal, Student-t 

and skewed Student-t distributions are provided in Tables 5–8 

Table 5: AR (1)-GARCH (1-1) Model Estimation 

 

Notes: ln(ℓ)is the value of the maximized log-likelihood. AIC is the Akaike (1974) Information 

criterion. Figures between parentheses are the standard errors. N , t and SKt are respectively 

normal, Student-t and the skewed Student-t distribution.  *, ** and *** the significant level of 

10%; 5% and 1%, respectively. 



  
  
 
 

DOI: 10.5281/zenodo.10817271 

232 | V 1 9 . I 0 3  

The table 5 presents estimation results for GARCH models under three alternative distributions 

(normal, Student-t, and skewed Student-t) for Islamic FTSE and Islamic Dow Jones stock 

indexes. We note that ARCH and GARCH coefficients are consistently positive for all-time 

series, indicating the presence of volatility clustering and persistence. The condition for the 

existence of conditional variance, α₁ + β₁ < 1, holds for both stock returns. This condition is 

crucial for the GARCH model's stability. The exponential decay of autocorrelations with a 

decay factor of α₁ + β₁ supports the short memory nature of the GARCH (1, 1) model, as 

outlined by Bollerslev (1986). Financial returns are not normally distributed, necessitating the 

consideration of stylized facts like fat tails and skewness. Estimating GARCH models under 

different distributions (normal, Student-t, and skewed Student-t) allows for a more accurate 

representation of the underlying dynamics. Evaluation metrics, such as log-likelihood and the 

Akaike Information Criterion (AIC), suggest that GARCH models under a skewed Student-t 

distribution outperform other distributions (normal and Student-t). GARCH models effectively 

capture the dynamics of the time series data for Islamic FTSE and Islamic Dow Jones stock 

indexes. The choice of distribution significantly affects the model's ability to address stylized 

facts, with the skewed Student-t distribution proving most suitable for these financial time 

series. 

Table 6: AR (1)-EGARCH (1-1) Model Estimation 

 

Notes: ln(ℓ)is the value of the maximized log-likelihood. AIC is the Akaike (1974) Information 

criterion. Figures between parentheses are the standard errors. N , t and SKt are respectively 

normal, Student-t and the skewed Student-t distribution.  *, ** and *** the significant level of 

10%; 5% and 1%, respectively. 
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Table 6 reports the EGARCH model estimates results for our times series under the same three 

distributions (normal, Student-t and skewed Student-t). In reality, this model considers for 

leverage effect in volatility, clustering volatility and asymmetry. Those stylized facts are very 

important since all our time series dynamics support those facts. The results given above 

showed very clearly that the EGARCH model performs very well compared to the GARCH 

model. Furthermore, under a skewed Student-t distribution, the EGARCH provides the best 

adequate model for all our time series. 

In reality, return volatility changes quite slowly over time. Indeed, the autocorrelation function 

decays hyperbolically as shown in Ding, Granger and Engle (1993) among others. Therefore, 

the effects of a shock can take a considerable time to decay. So, when we consider a stationary 

process, the propagation of shocks decays very quickly (at an exponential rate). But when the 

process is a unit root the shocks effect is infinite. Thus, a factionary integrated model can be a 

good solution to take into account the long memory (long-run dependence.) in the return 

volatility. Estimates results of long memory GARCH-type models are given in table 7 and 8 

Table 7.0: AR (1)-FIGARCH (1-d-1) model estimation 

 

Notes: ln(ℓ)is the value of the maximized log-likelihood. AIC Is the Akaike (1974) Information 

criterion. Figures between parentheses are the standard errors. N , t and SKt are respectively 

normal, Student-t and the skewed Student-t distribution.  *, ** and *** the significant level of 

10%; 5% and 1%, respectively. 
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Table 7 presents the estimation results of the AR (1)-FIGARCH (1-d-1) model under three 

alternative innovation distributions (normal, Student-t, and skewed Student-t) for Islamic FTSE 

and Islamic Dow Jones. The results show significant coefficients for these parameters, 

indicating the importance of considering long memory and volatility clustering in the model. 

The skewed Student-t distribution shows superiority in capturing the stylized facts of financial 

time series, including heavy tails and skewness. The estimated fractionally integrated 

parameter (d) ranges from 0.40 to 0.60, indicating that the time series is governed by a long 

memory process. This suggests that return volatility changes slowly over time, supporting the 

idea that shocks can take a considerable time to decay. The log-likelihood and the Akaike 

Information Criterion (AIC) are used to evaluate model performance. Lower AIC values 

indicate better model fit. The results suggest that the FIGARCH model, especially under a 

skewed Student-t distribution, outperforms GARCH and EGARCH models in capturing the 

dynamics of the time series. 

Table 8: AR (1)-FIEGARCH (1-d-1) Model Estimation 

 

Notes: ln(ℓ)is the value of the maximized log-likelihood. AIC Is the Akaike (1974) Information 

criterion. Figures between parentheses are the standard errors. N , t and SKt are respectively 

normal, Student-t and the skewed Student-t distribution.  *, ** and *** the significant level of 

10%; 5% and 1%, respectively. 
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Table 8 provides the estimation results of the AR (1)-FIEGARCH (1-d-1) model under three 

alternative innovation distributions (normal, Student-t, and skewed Student-t) for Islamic FTSE 

and Islamic Dow Jones.  

The results show significant coefficients for the FIEGARCH parameters, indicating the 

importance of considering both leverage effects and long memory in the model.  

The model is estimated under three different innovation distributions.  

The skewed Student-t distribution continues to demonstrate superiority in capturing the 

stylized facts of financial time series, including heavy tails and skewness.  

The estimated fractionally integrated parameter (d) ranges from 0.4 to 0.6, confirming the 

presence of long memory in the financial time series.  

The long memory phenomenon is significant as the value of d is between zero and one, 

indicating that return volatility changes quite slowly over time.  

The log-likelihood and the Akaike Information Criterion (AIC) are used to evaluate model 

performance. Lower AIC values indicate better model fit.  

The FIEGARCH model outperforms other models, suggesting that it is the most suitable model 

for capturing the dynamics of the financial time series.  

The model considers both leverage effects and long-range memory, providing a more accurate 

representation of the financial time series compared to simpler models. 

4.2 The Value at Risk Analysis  

4.2.1 The In-sample VaR Estimation Results 

In this sub-section, we estimate the one-day-ahead VaR and ES for the AR (1)-FIEGARCH 

model under the three alternative innovation’s distributions (normal, Student-t and skewed 

Student-t) for two Islamic stock index returns.  

Indeed, we have computed the Kupiec’s (1995) LR tests and the Dynamic Quantile (DQ) test 

of Engle and Manganelli (2002).  

The VaR levels range ( α ) from 0.05 to 0.01 for short and it ranges from 0.95 to 0.99 for the 

long trading positions. In addition, the Expected Shortfall (ES) is computed for both short and 

long trading positions for the mentioned levels.  

As we knew, the failure rate for the short trading position denotes the percentage of positive 

returns larger than the VaR prediction. However for the long trading positions, the failure rate 

is the percentage of negative returns smaller than the VaR prediction.  

Those results are reported in the following Table. 
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Table 9: In sample VaR Back testing results based on AR (1)-FIEGARCH (1.d.1) 
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Table 9 reports in-sample VaR back testing results for the AR (1)-FIEGARCH (1.d.1) model 

under three alternative innovation distributions (normal, Student-t, and skewed Student-t) for 

Islamic Dow Jones and Islamic FTSE. Key elements of the table include quantile values, failure 

rates, Kupiec's LR tests, p-values, Dynamic Quantile (DQ) tests, p-values, and Expected 

Shortfall (ES) values for both short and long trading positions at various VaR levels.  

Panel a. for Islamic Dow Jones, for both short and long trading position, we note: High failure 

rates, significant Kupiec LRT, and DQ test results indicate poor performance of the normal 

distribution.  

The Student-t Distribution improved performance compared to the normal distribution but still 

not satisfactory.  

The Skewed Student-t Distribution outperforms other distributions, indicating that it effectively 

models fat-tailed and skewed returns. Panel b. for Islamic FTSE, we note similar patterns as 

observed in Islamic Dow Jones, with the skewed Student-t distribution outperforming others 

for both short and long trading position.  

Overall, the normal distribution-based VaR models exhibit poor performance due to the neglect 

of fat tails and skewness in the return distribution.  

The Student-t distribution improves results, but the skewed Student-t distribution consistently 

outperforms, providing the most satisfactory results for both short and long trading positions.  

The ability of the skewed Student-t distribution to capture fat tails and skewness contributes to 

its superiority in modeling extreme events and tail risk. 

These findings emphasize the importance of considering alternative distributions, especially 

those that account for fat tails and skewness, in improving the accuracy of VaR models.  

The skewed Student-t distribution, in particular, proves to be a robust choice for capturing the 

complexities of financial return distributions. 

4.2.2 The out-of-sample VaR Estimation Results 

As we know Value-at-Risk target is to quantify the potential losses in a definite horizon. Indeed, 

VaR model is based on forecasting risk which has to be made for a holding period forecast h.  

In our study we have tested the short and long VaR out-of-sample for one day horizon. 

Therefore, the skewed-Student-t FIEGARCH model under three alternative innovations’ 

distribution was assessed to predict the one-day-ahead VaR.  

Indeed, we considered 1000 observations of the out-of-sample. Our forecast updated the 

FIEGARCH model parameters every 50 observations in the out-of-sample period.  
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Table 10: Out-of-sample VaR Back Testing Results based on AR (1)-FIEGARCH (1.d.1) 
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Table 10 provides out-of-sample VaR back testing results based on the AR (1)-FIEGARCH 

(1.d.1) model for the Islamic Dow Jones and FTSE indices. The table includes various statistics 

such as quantiles, failure rates, Kupiec's LR tests, p-values, Dynamic Quantile (DQ) tests, p-

values, and Expected Shortfall (ES) values for both short and long trading positions at different 

VaR levels. In panel a, we note that the skewed Student-t distribution consistently outperforms 

other distributions, providing low failure rates and satisfactory Kupiec LRT and DQ test results 

for short and long VaR. 

The normal distribution shows reasonable performance, indicating that it can be a viable option 

in out-of-sample scenarios. In panel b we have similar patterns observed as in Panel a, with the 

skewed Student-t distribution consistently providing better results. The skewed Student-t 

distribution continues to be the best-performing distribution, showing its effectiveness in 

capturing fat-tailed and skewed returns. Overall we conclude that, Out-of-sample VaR 

estimates are similar to in-sample results, with the skewed Student-t FIEGARCH model 

consistently exhibiting superior performance.  

The skewed Student-t distribution demonstrates its ability to improve VaR estimation quality, 

with the null hypothesis of the correct model not being rejected. Unlike in-sample VaR results, 

the out-of-sample VaR under a normal distribution performs relatively well, suggesting that, 

in practical scenarios, the normal distribution may provide acceptable results compared to the 

Student-t distribution. The conservative nature of the Student-t distribution observed in in-

sample results is less pronounced in out-of-sample scenarios. 

These findings suggest that the skewed Student-t FIEGARCH model remains effective for out-

of-sample VaR estimation, providing accurate and reliable forecasts of potential losses in 

financial markets. The inclusion of both fat tails and skewness in the model contributes to its 

robustness and superior performance compared to alternative distributions. 

 

5. CONCLUSION 

In conclusion, this paper has undertaken a comprehensive analysis of Value-at-Risk (VaR) and 

Expected Shortfall (ES) for two Islamic stock index return series. The primary focus was on 

addressing volatility clustering, a prevalent characteristic in the sample return series. To capture 

the persistence of volatility, four GARCH-type models, including two fractionally integrated 

models, were evaluated.  

The assessment involved considering three alternative distributions—normal, Student-t, and 

skewed Student-t distributions. The findings of this study highlight the superiority of the 

skewed Student-t FIEGARCH model over other models. This superiority is attributed to its 

capacity to simultaneously account for asymmetry, long memory, and the leverage effect. The 

computation of VaR for both short and long trading positions, with a one-day horizon, further 

reinforced the efficacy of the skewed Student-t FIEGARCH model. Back testing results 

demonstrated the model's robust performance, making it a valuable tool for risk measurement 

and hedging in financial markets.  
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The implications of these findings are significant for risk managers, providing them with 

insights into the choice of models for measuring and mitigating financial risk. The 

incorporation of asymmetry, long memory, and leverage effect in the skewed Student-t 

FIEGARCH model contributes to its accuracy in forecasting potential losses. This research 

contributes to the broader understanding of risk modeling and management, particularly in the 

context of Islamic stock indices. Overall, the skewed Student-t FIEGARCH model emerges as 

a powerful and effective tool for financial risk assessment, offering valuable applications in 

real-world risk management scenarios. 
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