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Abstract  

Metaheuristics optimization has gained popularity in recent years for its effectiveness in solving real-world 

problems, such as engineering design. These techniques are especially helpful in solving nonlinear, non-convex, 

non-differentiable, high-dimensional, NP-hard, and discrete search space problems that are difficult to solve with 

traditional optimization techniques. In this study, a modified Harris Hawks Optimization (MHHO) algorithm is 

proposed using a mutation-selection strategy and crossover operator to global optimization problems. It can 

control the balance between exploration and exploitation in the search process. This flexibility allows the 

algorithm to adapt to different optimization problems and search landscapes, potentially improving its 

performance in finding optimal or near-optimal solutions. The proposed method has been tested on a variety of 

constrained structural engineering design problems and compared with well-known metaheuristic algorithms. The 

results from systematic experiments demonstrated that the MHHO algorithm provided more reliable solutions 

than other well-known algorithms. Furthermore, the experimental findings show that MHHO outperformed other 

metaheuristic algorithms in terms of optimization performance.  

Keywords: Optimization, Meta-heuristics, Structural Engineering Design, Harris Hawks Algorithm, Global 

Optimization Problems. 

 

1. INTRODUCTION 

Optimization is the process of identifying the best solution among all possible options to 

maximize or minimize the output. With the rise in problem complexity over recent years, there 

has been a need for new optimization techniques that can handle these challenges effectively. 

Optimization problem-solving methods can be categorized into two groups: deterministic and 

random approaches.  

Deterministic methods are effective for linear, continuous, differentiable, and convex 

optimization problems. However, they struggle with nonlinear, non-convex, non-differentiable, 

high-dimensional, NP-hard problems and discrete search spaces - all common features of real-

world optimization problems.  

Stochastic algorithms, particularly metaheuristic algorithms, have been developed to address 

these challenges (E. Houssein et al., 2021; Sergeyev et al., 2018).  
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Metaheuristic algorithms use random search in the problem space and rely on random operators 

to provide suitable solutions to optimization problems. However, there is no guarantee that the 

solution obtained from these methods will be the best or global optimal.  

This has led researchers to develop numerous metaheuristic algorithms to improve solutions. 

Over recent decades, various types of methods have been developed to solve constrained 

engineering problems.  

Two prominent categories of these methods are mathematical and metaheuristic methods (Rao, 

2009).  Mathematical methods use the gradient of the objective function and constraints of the 

problem to find the optimal solution.  

However, these methods are sensitive to the initial starting point and may not be suitable for 

complex optimization problems or cases where gradients cannot be calculated easily.  

Metaheuristic algorithms follow a general process as shown in Figure 1. The algorithm steps 

represent the unique operators of each algorithm, which generate new solutions to optimization 

problems. These operators refer to the optimal process of a particular phenomenon that these 

algorithms have imitated.  

According to the type of basic phenomena, metaheuristic algorithms can be classified into four 

main categories:  

(1) Evolutionary,  

(2) Swarm intelligence,  

(3) physics-based, and  

(4) human-based algorithms.  

Evolutionary algorithms are motivated by natural evolution. Swarm intelligence algorithms 

model the natural behavior of animals in teamwork such as foraging and hunting. Physical 

phenomena and laws of science inspire physics-based algorithms. Finally, human-based 

algorithms mimic various optimal behaviors of humans in different condition (Trojovský & 

Dehghani, 2023). Some popular and novel metaheuristic algorithms are presented in Table 1 

 

Figure 1: The General Structure of Optimization Algorithms 
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Table 1: List of Some Popular and New Metaheuristic Algorithms 

Algorithm Ref Algorithm Ref 

Genetic Algorithms 

(GA) 
(Holland, 1992) Multi-Verse Optimizer (MVO) 

(Mirjalili et 

al., 2016) 

Particle Swarm 

Optimization (PSO) 
(Kennedy & Eberhart, 1995) 

(Harris Hawks Optimization) 

HHO 

(Heidari et al., 

2019) 

Antlion Optimizer 

(ALO) 
(Mirjalili, 2015) Wild Horse Optimizer (WHO) 

(Naruei & 

Keynia, 2022) 

Aquila Optimizer 

(AO) 
(Abualigah et al., 2021) 

Dynamic Cat Swarm 

Optimization Algorithm (DCSO) 

(Ahmed et al., 

2021) 

Grey Wolf Optimizer 

(GWO) 
(Mirjalili et al., 2014) 

Whale Optimization Algorithm 

(WOA) 

(Mirjalili & 

Lewis, 2016) 

Dingo Optimization 

Algorithm (DOA) 

(Peraza-Vázquez et al., 

2021) 

War Strategy Optimization 

(WSO) 

(Braik et al., 

2022) 

Harris Hawks optimization (HHO) is a new metaheuristic optimization algorithm inspired by 

the cooperative behavior and foraging patterns of Harris Hawks. HHO exhibits simplicity of 

implementation, a high level of exploration and exploitation, and requires a small number of 

controlling parameters (Heidari et al., 2019). In this paper, we propose a modified version of 

the Harris Hawks optimization algorithm (MHHO) using a mutation-selection approach.  

We evaluate the MHHO by applying it to four engineering design problems, highlighting its 

effectiveness in real-world applications. Comparative experiments involving basic HHO and 

several well-known metaheuristic algorithms demonstrate the superior performance of the 

proposed MHHO algorithm. 

 

2. HARRIS HAWKS OPTIMIZATION (HHO) 

Harris Hawks Optimization (HHO) is motivated by the remarkable cooperative foraging 

behavior observed in Harris' hawks. These hawks exhibit a diverse range of chasing patterns in 

response to the dynamic environment and the evasive strategies employed by their prey. These 

agile switching activities effectively confuse the prey, while the cooperative strategies 

employed by the hawks assist in pursuing and eventually exhausting the detected prey, 

rendering it more vulnerable.  

The HHO algorithm specifically emulates the process of hunting prey observed in hawks. It 

encompasses two distinct phases: the exploration phase and the exploitation phase. Each phase 

mimics different behaviors exhibited by hawks during the predation process. As with other 

swarm intelligence algorithms. Figure 2 provides a detailed illustration of the exploratory and 

exploitative phases of HHO (Heidari et al., 2019). 
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Figure 2: The Phases of Harris Hawks Algorithm 

2.1 Exploration Phase 

Harris's hawks typically perch on random locations and monitor the desert to spot prey.  

Two perching strategies are used, based on the positions of other family members and the prey, 

selected randomly according to 𝑞 value. 𝑞 Is an equal chance for each strategy during 

exploration. If𝑞 <  0.5, Harris's hawks perch near family members and prey.  

Otherwise, they perch on random tall trees (within their home range). The updated position 

during exploration is modeled using equation (1): 

𝑋𝑖(𝑡 + 1) = {
𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋𝑖(𝑡)|,                          𝑞 ≥ 0.5

  𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑀(𝑡) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)),            𝑞 < 0.5  
                        (1)             

𝑋𝑖(𝑡) and   𝑋𝑏𝑒𝑠𝑡(𝑡) represent the position of the 𝑖𝑡ℎ hawk and rabbit at the 𝑡𝑡ℎ iteration, 

respectively. 𝑞 is a random number between 0 and 1, which denotes an equal chance for each 

perching strategy in the exploration phase.  

If 𝑞 <  0.5, Harris's hawks perch based on the positions of other family members (to be close 

enough to them when attacking) and the rabbit.  

Otherwise, they perch on random tall trees (random locations within their home range).  

The updated position during exploration is modeled using equation (1), with, 𝑟1; 𝑟2; 𝑟3; 𝑟4 as 

random numbers inside (0;  1), which are updated in each iteration, with 𝑟3 being a scaling 

coefficient to further increase randomness when 𝑟4 takes values close to 1 and similar 

distribution patterns may occur. 𝐿𝐵 𝑎𝑛𝑑 𝑈𝐵 Denote the lower and upper bounds of variables. 

𝑋𝑟𝑎𝑛𝑑(𝑡) Refers to a randomly selected hawk from the current population, and 

                                           𝑋𝑀(𝑡) =
1

𝑁
∑  𝑋𝑖(𝑡)𝑁

1                                                                    (2) 

This represents the typical position of the present population of hawks, 𝑁 being the total 

number of hawks, and each location is within the group's home range (𝐿𝐵 𝑎𝑛𝑑 𝑈𝐵). 
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2.2 Transition from Exploration to Exploitation Phase 

The Harris Hawks Optimization (HHO) algorithm incorporates a transition mechanism that 

switches from an exploration phase to an exploitation phase, depending on the prey's escaping 

energy. In this algorithm, the prey's energy is represented as gradually decreasing during its 

escape behavior. 

                                              𝐸 = 2𝐸0(1 −
𝑡

𝑇
)                                                                       (3) 

The prey's escaping energy, denoted as 𝐸 and initialized as𝐸0, determines the exploration or 

exploitation phase in the HHO algorithm. If|𝐸| ≥ 1, the algorithm is in the exploration phase, 

while |𝐸| < 1 indicates the exploitation phase. 

2.3 Exploitation Phase 

During the exploitation phase, the HHO algorithm employs four distinct chasing and attack 

strategies based on the prey's escaping energy and the hawks' chasing behavior. The parameter 

r is used to select a chasing strategy depending on whether the prey successfully escapes (𝑟 <
0.5) 𝑜𝑟 𝑛𝑜𝑡 (𝑟 ≥ 0.5) before an attack. 

i. Soft Besiege 

When the probability of escape (𝑟 ≥  0.5) and the escaping energy (|𝐸|  ≥  0.5), the prey still 

possesses sufficient energy and attempts to escape. In response, the Harris' hawks softly 

surround the prey to deplete its remaining energy before launching an attack. The behavior of 

the Harris' hawks in this phase is modeled as follows: 

                          𝑋(𝑡 + 1) = ∆𝑋(𝑡) − 𝐸|𝐽𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋(𝑡)|                                                  (4) 

                              ∆𝑋(𝑡) = 𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋(𝑡)                                                                         (5) 

                                     𝐽 = 2(1 − 𝑟5)                                                                                    (6) 

∆𝑋(𝑡) Is used to indicate the difference between the prey's present position and the previous 

position, while 𝐽 is used to describe the prey's ability to jump randomly. 

ii. Hard Besiege 

When the probability of escape (𝑟 ≥  0.5) and the escaping energy (|𝐸|  <  0.5), the prey's 

energy is low, and the Harris' hawks readily encircle it before launching an attack. The positions 

of the prey and the hawks are updated using the following equations: 

                          𝑋(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝐸|∆𝑋(𝑡)|                                                                (7) 

iii. Soft Besiege with Progressive Rapid Dives 

When the prey has enough energy to successfully escape (|𝐸|  ≥  0.5) and(𝑟 <  0.5), the 

Harris' hawks perform a soft besiege with several rapid dives around the prey to progressively 

correct its position and direction. This behavior is modeled using the following equations: 

                                     𝑌 = 𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝐸|𝐽𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋(𝑡)|                                                 (8) 
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                                     𝑍 = 𝑌 + 𝑆 × 𝐿𝐹(𝐷)                                                                           (9)  

                         𝑋(𝑡 + 1) = {
𝑌      𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋(𝑡))

𝑍      𝑖𝑓 𝐹(𝑍) < 𝐹(𝑋(𝑡))
                                                           (10) 

Where S is a random vector. The next position will be chosen based on the best position 

between 𝑌 and 𝑍. 

iv. Hard Besiege with Progressive Rapid Dives 

When (|E| < 0.5) and (r < 0.5), indicating that the prey has insufficient energy to escape, the 

hawks perform a hard besiege by decreasing the distance between their average position and 

the prey. This behavior is modeled using the following equations:                                       

                                     𝑌 = 𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝐸|𝐽𝑋_𝑏𝑒𝑠𝑡 (𝑡) − 𝑋𝑀(𝑡)|                                        (11) 

                                     𝑍 = 𝑌 + 𝑆 × 𝐿𝐹(𝐷)                                                                          (12)  

                         𝑋(𝑡 + 1) = {
𝑌      𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋(𝑡))

𝑍      𝑖𝑓 𝐹(𝑍) < 𝐹(𝑋(𝑡))
                                                          (13) 

The new iteration will be chosen based on the best position between 𝑌 and 𝑍 (Wang et al., 

2021). 

 

3. THE PROPOSED HARRIS HAWKS OPTIMIZATION (MHHO) 

In this study, a modified version of the Harris Hawks Optimizer (MHHO) is proposed. To 

incorporate mutation and crossover operator into the algorithm. a mutation operator is 

introduced that randomly modifies the position of some hawks in the population at each 

iteration. This can be done by randomly selecting a subset of hawks and adding a small random 

perturbation to their positions. Let 𝑋𝑎 , 𝑋𝑏 and 𝑋𝑐be the best three hawks positions based on 

fitness function value, respectively. Then, the new mutation position vector 𝑋(mut) for ith 

hawk can be defined as: 

𝑋(𝑚𝑢𝑡) = 𝑋(𝑡 + 1) + 2 ∗ (1 −
𝑡

𝑡𝑚𝑎𝑥
) ∗ (2 ∗ 𝑟𝑎𝑛𝑑 − 1) ∗ (𝑋𝑎 − 𝑋𝑏 − 𝑋𝑐) + (2 ∗ 𝑟𝑎𝑛𝑑 −

1)(𝑋𝑎 − 𝑋(𝑡 + 1))                                                                                                                (14)      

Where N denotes total number of hawks and all locations are within group's home 

range(𝐿𝐵; 𝑈𝐵). The position vector for next generation 𝑋(𝑛𝑒𝑤) can be obtained through 

selection process described in Eq. 

                     𝑋(𝑛𝑒𝑤) = {
X(mut)    (𝐹(𝑋(mut) < 𝐹(𝑋(𝑡 + 1))

𝑋(𝑡 + 1)  ( 𝐹(𝑋(mut) ≥ 𝐹(𝑋(𝑡 + 1)) 
                                         (15) 

The crossover operation combines the positions of two hawk positions, using crossover 

Probability 𝐶 𝑅 , the algorithm creates a new solution that shares properties with positions 

𝑋(𝑡 + 1) and 𝑋(𝑚𝑢𝑡).  
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The equation for the crossover operation is as follows: 

                   𝑋(𝑛𝑒𝑤) = {
  𝑋(𝑡 + 1)    𝑟𝑎𝑛𝑑 > 𝐶𝑅 

X(mut)      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                (16) 

The crossover function is responsible for performing the crossover operation, if the random 

number generated is less than the crossover rate, the crossover is applied and the resulting 

position is assigned to the hawk as the new solution.  

The mutation rate determines the intensity of the mutation, and the crossover rate determines 

the probability of crossover during the optimization process. These parameters allow for greater 

flexibility and control over the search behavior of the algorithm. 

The mutation function has been added to perform the mutation operation, and the crossover 

function has been added to perform the crossover operation. These functions are called within 

the main loop of the HHO function based on the given mutation and crossover rates. By 

adjusting the mutation and crossover rates, you can control the balance between exploration 

and exploitation in the search process. This flexibility allows the algorithm to adapt to different 

optimization problems and search landscapes, potentially improving its performance in finding 

optimal or near-optimal solutions. 

Overall, these modifications enhance the algorithm's ability to explore and exploit the search 

space, potentially leading to improved optimization performance. 

 

4. EXPERIMENT RESULTS AND DISCUSSION  

The MHHO algorithm performance is assessed using four benchmark problems encompassing 

various engineering fields. Each problem is independently executed 30 times with the MHHO 

algorithm, and the outcomes are compared against counterpart algorithms from existing 

literature. For the performance evaluation, the input parameters are set as follows: 𝑁 = 50, 

tmax= 1000, and𝛽 =  1.5. To obtain the best, worst, average optimal values, and standard 

deviation for each algorithm, the aforementioned algorithms are executed 30 times. The best 

optimal value is denoted as 'Best,' the worst optimal value as 'Worst,' the average optimal value 

as 'Average,' and the standard deviation as 'Std.' The best values are indicated in bold. By 

conducting this rigorous evaluation, we can effectively compare the performance of the MHHO 

algorithm with other algorithms on the selected benchmark problems. 

4.1 Tension/Compression Spring Design Optimization Problem 

In practical applications, the design of tension/compression springs presents a challenge in an 

effort to minimize their weight. A schematic of this design is displayed in Figure 3 (Arora, 

2011). The problem formulation for tension/compression spring design involves finding the 

optimal parameters that will achieve minimum weight while maintaining stability and 

reliability. 
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The tension/compression spring problem is modeled using the following equations:                                       

Consider 𝑋 =  [𝑥1, 𝑥2, 𝑥3]  =  [𝑑, 𝐷, 𝑃]. 

Minimize   

𝑓(𝑋) = (𝑥3 + 2)𝑥2𝑥1
2 

Subject to:  

𝑔1(𝑋) = 1 −
𝑥2

3𝑥3

71785𝑥1
4 ≤ 0, 

𝑔2(𝑋) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3 − 𝑥1

4)
+

1

5108𝑥1
2 − 1 ≤ 0, 

𝑔3(𝑋) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0, 

𝑔4(𝑋) =
𝑥1 + 𝑥2

1.5
− 1 ≤ 0, 

Variable range: 

0.05 ≤ 𝑥1 ≤ 2, 0.25 ≤ 𝑥2 ≤ 1.3, 2 ≤ 𝑥3 ≤ 15. 

 

Figure 3: Tension/Compression Spring 

Table 2: Comparison Results for the Tension/Compression Spring Design Problem 

Algorithm 
Optimum variables 

Optimum cost 
d D P 

MHHO 0.051643 0.3556 11.3548 0.012665 

HHO 0.052524 0.377148 10.1845 0.012678 

ALO 0.052211 0.369398 10.5825 0.01267 

AO 0.05 0.312028 15 0.013261 

DOA 0.051689 0.356719 11.2889 0.012665 

GWO 0.051473 0.351456 11.6085 0.012672 

MVO 0.05 0.3123 14.7356 0.013066 

WHO 0.051692 0.356797 11.2843 0.012665 

WOA 0.052026 0.364868 10.8267 0.012667 

WSO 0.052108 0.366878 10.7173 0.012668 

DCSO 0.052721 0.38205 9.9449 0.012684 

PSO 0.049644 0.307165 13.86793 0.013151 

GA 0.049763 0.313345 15.09875 0.012887 
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Table 3: Statistical Results for the Tension/Compression Spring Design Problem 

Algorithm Best Average Worst Std 

MHHO 0.012665 0.013504 0.017773 0.001543 

HHO 0.012678 0.013839 0.017057 0.001076 

ALO 0.01267 0.013577 0.017568 0.001198 

AO 0.013261 0.015992 0.020854 0.001685 

DOA 0.012666 0.012806 0.014965 0.000372 

GWO 0.012672 0.012714 0.012823 2.56E-05 

MVO 0.013066 0.017289 0.018126 0.001234 

WHO 0.012666 0.012736 0.013193 0.000112 

WOA 0.012667 0.013742 0.017774 0.001103 

WSO 0.012668 0.015212 0.041668 0.00503 

DCSO 0.012684 0.012718 0.01273 1.01E-05 

PSO 0.013151 0.014165 0.016378 0.002192 

GA 0.012887 0.013178 0.015355 0.002378 

The results of optimizing the design variables of the tension/compression spring using the 

standard HHO, MHHO and competing algorithms are presented in Table 2. The simulation 

results show that the MHHO algorithm obtained the best solution of this problem, with variable 

values of (0.0516425, 0.3556, 11.3548) and corresponding objective function values of 

0.012665. Table 3 displays the statistical findings obtained from evaluating the performance of 

the MHHO algorithm and competing algorithms. The table clearly shows the superiority of the 

MHHO algorithm in providing the best values of the numerical signals, and also reveals its 

effectiveness in solving the tension/compression spring optimization problem. Figure 4 

displays the MHHO convergence curve to demonstrate how the MHHO system converges to 

the solution of the tension/compression spring.  

 

Figure 4: Convergence Curve of the MHHO for the Tension/Compression  

Spring Design Problem 



  
  
 
 

DOI: 10.5281/zenodo.10807204 

298 | V 1 9 . I 0 3  

4.2 Pressure Vessel Design 

Pressure vessel design is a real-world challenge that seeks to optimize design costs. A schematic 

of this system is shown in Figure 5 (Kannan & Kramer, 1994). The pressure vessel design 

problem is formulated as follows: 

Consider 𝑋 =  [𝑥1, 𝑥2, 𝑥3,𝑥4]  =  [𝑇𝑠, 𝑇ℎ, 𝑅, 𝐿]. 

Minimize   

𝑓(𝑋) = 0.6224𝑥1𝑥3𝑥4 + 1.7881𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3 

Subject to:  

𝑔1(𝑋) = −𝑥1 + 0.0193𝑥3 ≤ 0, 

𝑔2(𝑋) = −𝑥2 + 0.00954𝑥3 ≤ 0, 

𝑔3(𝑋) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1,296,000 ≤ 0, 

𝑔4(𝑋) = 𝑥4 − 240 ≤ 0, 

Variable range: 

𝑥1, 𝑥2𝜖{1 × 0.0625, 2 ×  0.0625, 3 ×  0.0625, . . . , 1600 ×  0.0625}, 10 ≤ 𝑥3, 𝑥4 ≤ 200. 

 

Figure 5: Schematic View Pressure Vessel Design Problem 

Table 4: Comparison Results for the Pressure Vessel Design Problem 

Algorithm 
Optimum variables Optimum cost 

  

R L  

MHHO 0.778169 0.383036 40.31962 200 5880.671 

HHO 0.811244 0.39881 41.93468 178.6766 5950.075 

ALO 0.778393 0.383148 40.33125 199.8384 5881.059 

AO 0.798452 0.420413 40.91055 192.3804 6068.143 

DOA 0.778169 0.383036 40.31962 200 5882.681 

GWO 0.865387 0.427695 44.78171 159.8514 6035.825 

MVO 0.780341 0.391693 40.43147 198.4788 5907.15 

WHO 0.778169 0.383036 40.31962 200 5881.245 

WOA 0.790485 0.393914 40.55615 196.7333 5969.576 

WSO 0.77817 0.383403 40.31965 200 5923.719 

DCSO 0.778169 0.383576 40.31962 200 5882.232 

PSO 0.768881 0.408314 41.3406 201.3501 5914.862 

GA 1.103667 0.926399 45.43465 185.5236 6576.185 
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Table 5: Statistical Results for the Pressure Vessel Design Problem 

Algorithm Best Average Worst Std 

MHHO 5880.671 6097.401 6930.734 265.4723 

HHO 5950.075 6651.196 7541.441 360.5791 

ALO 5881.059 6242.857 7358.018 364.3424 

AO 6068.143 6699.043 7598.282 425.6267 

DOA 5882.681 6152.946 9728.734 639.3113 

GWO 6035.825 6506.604 7383.845 328.3425 

MVO 5907.15 6611.37 7341.25 416.5641 

WHO 5881.245 6189.408 7299.265 362.3032 

WOA 5969.576 7562.618 11610.02 1198.784 

WSO 5923.719 7557.022 14753.81 1972.031 

DCSO 5882.232 6151.743 6531.004 161.5312 

PSO 5914.862 6292.245 7037.343 497.5605 

GA 6576.185 6674.924 8041.525 661.4862 

Pressure vessel design is optimized through the use of standard HHO, MHHO and competitor 

algorithms. Table 4 presents the findings for the design variables related to this subject.  

The table indicates that MHHO yields the best values for the design variables, which are 

(0.7781686, 0.3830364, 40.31962, 200). This results in an objective function value of 

5880.6708. Table 5 displays the statistical indicator results of the competitor and MHHO 

algorithm performances. By offering more favorable values for statistical indicators, MHHO 

has successfully optimized the pressure vessel design challenge, according to statistical results. 

Figure 6 displays the MHHO convergence curve. 

 

Figure 6: Convergence Curve of the MHHO for the Pressure Vessel Design 

Optimization Problem 
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4.3 Speed Reducer Design 

The developed speed reducer is a real-world engineering challenge of speed reduction aimed 

at reducing the weight of the reducer. A schematic of this system is shown in Figure 7 (Sattar 

& Salim, 2021).The design problem is formulated as follows: 

Consider 𝑋 =  [𝑥1, 𝑥2, 𝑥3,𝑥4, 𝑥5, 𝑥6,𝑥7]  =  [𝑏, 𝑚, 𝑧, 𝑙1,, 𝑙2,, 𝑑1,, 𝑑2,]. 

Minimize   

𝑓(𝑋) = 0.7854𝑥1𝑥2
2(3.333𝑥3

2 + 14.9334𝑥3 − 43.0934) − 1.508𝑥1(𝑥6
2 + 𝑥7

2)
+ 7.4777(𝑥6

3 + 𝑥7
3) + 0.7854(𝑥4𝑥6

2 + 𝑥5𝑥7
2) 

Subject to:  

𝑔1(𝑋) =
27

𝑥1𝑥2
2𝑥3

− 1 ≤ 0, 

𝑔2(𝑋) =
397.5

𝑥1𝑥2
2𝑥3

2 − 1 ≤ 0, 

𝑔3(𝑋) =
1.93𝑥4

3

𝑥2𝑥6
4𝑥3

− 1 ≤ 0, 

𝑔4(𝑋) =
1.93𝑥5

3

𝑥2𝑥7
4𝑥3

− 1 ≤ 0, 

𝑔5(𝑋) =
√(

745𝑥4

𝑥2𝑥3
)2 + 157.5 × 106

110𝑥6
3 − 1 ≤ 0, 

𝑔6(𝑋) =
√(

745𝑥5

𝑥2𝑥3
)2 + 16.9 × 106

85𝑥7
3 − 1 ≤ 0, 

𝑔7(𝑋) =
𝑥2𝑥3

40
− 1 ≤ 0, 

𝑔8(𝑋) =
5𝑥2

𝑥1
− 1 ≤ 0, 

𝑔9(𝑋) =
𝑥1

12𝑥2
− 1 ≤ 0, 

𝑔10(𝑋) =
1.5𝑥6 + 1.9

𝑥4
− 1 ≤ 0, 

𝑔11(𝑋) =
1.1𝑥7 + 1.9

𝑥5
− 1 ≤ 0, 
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Variable range: 

2.6 ≤  𝑥1  ≤  3.6, 0.7 ≤  𝑥2  ≤  0.8, 𝑥3  ∈  {17, 18, 19, . . . , 28}, 7.3 ≤  𝑥4, 𝑥5  ≤  8.3,  

2.9 ≤  𝑥6  ≤  3.9, 5 ≤  𝑥7  ≤  5.5. 

 

Figure 7: A Schematic Representation of Speed Reducer 

Table 6: Comparison Results for the Speed Reducer Design Problem 

Algorithm 
Optimum variables Optimu

m cost b m p l1 l2 d1 d2 

MHHO 3.5 0.7 17 7.3 7.71532 3.35054 5.28665 2994.425 

HHO 3.51957 0.7 17 7.3 7.80311 3.36278 5.28668 3007.186 

ALO 3.5 0.7 17 7.30067 7.73969 3.35054 5.28666 2994.971 

AO 3.53806 0.7 17 8.11482 8.02291 3.36103 5.29534 3031.574 

DOA 3.5 0.7 17 7.3 7.71532 3.35054 5.28665 2994.485 

GWO 3.50277 0.7 17 7.46229 7.74759 3.35365 5.28683 2998.559 

MVO 3.50113 0.7 17 7.30129 8.03155 3.35599 5.28693 3003.387 

WHO 3.5 0.7 17 7.3 7.71532 3.35054 5.28665 2994.465 

WOA 3.5 0.7 17 7.3 7.86772 3.35106 5.30093 3007.013 

WSO 3.50256 0.7 17 7.3 7.7179 3.35054 5.28666 2995.489 

DCSO 3.5 0.7 17 7.3 7.75145 3.35054 5.28704 2995.463 

PSO 3.506677 0.698881 16.97277 8.337218 7.787524 3.358732 5.282308 3066.024 

GA 3.516538 0.698879 16.97289 8.357188 7.787516 3.363496 5.283263 3027.485 

Table 7: Statistical Results for the Speed Reducer Design Problem 

Algorithm Best Average Worst Std 

MHHO 2994.4245 2994.4247 2994.4307 0.00097163 

HHO 3007.1864 3140.0792 4051.1245 233.9707 

ALO 2994.9713 3002.5002 3014.3303 5.9549 

AO 3031.5739 3451.4741 4637.0591 491.7015 

DOA 2994.4845 12195.0482 456961.726 64184.5075 

GWO 2998.5588 3005.0827 3014.8602 3.9903 

MVO 3003.387 3033.6065 3088.1227 15.9462 

WHO 2994.4645 2996.1823 3033.7016 7.8481 

WOA 3007.0128 3143.9143 4669.3732 229.0892 

WSO 2995.4889 3054.8957 4861.2553 321.5473 

DCSO 2995.4632 3006.9478 3023.9603 6.4479 

PSO 3066.0235 3185.8769 3312.5289 17.11507 

GA 3027.4851 3294.6642 3618.7832 57.01175 



  
  
 
 

DOI: 10.5281/zenodo.10807204 

302 | V 1 9 . I 0 3  

Table 6 reports the outcomes of the speed reducer design optimization using MHHO, rival 

algorithms, and the standard HHO. The findings indicate that MHHO outperformed other 

metaheuristics in solving this problem, with the objective function value of 2994.4245 and the 

variable values of (3.5, 0.7, 17, 7.3, 7.71532, 3.35054, 5.28665). The superiority of the 

suggested MHHO is demonstrated by the statistical results obtained from MHHO and the 

algorithms compared in Table 7. Figure 8 displays the MHHO convergence curve obtained 

from solving the speed reducer design problem. 

 

Figure 8: Convergence Curve of the MHHO for the Speed Reducer  

Design Optimization Problem 

4.4 Welded Beam Design 

Welded beam design is considered a global challenge in engineering sciences, with the primary 

aim of reducing the cost of fabricating welded beams. The schematic of this system is depicted 

in Figure 9 (Coello, 2000). The formulation of this system is as follows: 

Consider 𝑋 =  [𝑥1, 𝑥2, 𝑥3,𝑥4]  =  [ℎ, 𝑙, 𝑡, 𝑏]. 

Minimize   

𝑓(𝑋) = 1.1047𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) 

Subject to:  

𝑔1(𝑋) = 𝜏(𝑋) − 𝜏𝑚𝑎𝑥 ≤ 0, 

𝑔2(𝑋) = 𝜎(𝑋) − 𝜎𝑚𝑎𝑥 ≤ 0, 

𝑔3(𝑋) = 𝛿(𝑋) − 𝛿𝑚𝑎𝑥 ≤ 0, 

𝑔4(𝑋) = 𝑥1 − 𝑥4 ≤ 0, 

𝑔5(𝑋) = 𝑃 − 𝑃𝑐(𝑋) ≤ 0, 

𝑔6(𝑋) = 0.125 − 𝑥1 ≤ 0, 
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𝑔7(𝑋) = 1.10471𝑥1
2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) − 0.5 ≤ 0, 

𝜏(𝑋) = √(𝜏ʹ)2 + 2𝜏ʹ𝜏ʺ
𝑥2

2𝑅
+ (𝜏ʺ)2, 

𝜏ʹ =
𝑃

√2𝑥1𝑥2
 , 

𝜏ʺ =
𝑀𝑅

𝐽
, 

𝑀 = 𝑃(𝐿 +
𝑥2

2
), 

𝑅 = √
𝑥2

2

4
+ (

𝑥1 + 𝑥3

2
)2, 

𝐽 = 2 {√2𝑥1𝑥2 [
𝑥2

2

4
(
𝑥1 + 𝑥3

2
)2]}, 

𝜎(𝑋) =
6𝑃𝐿

𝑥4𝑥3
2 , 

𝛿(𝑋) =
6𝑃𝐿2

𝐸𝑥3
2𝑥4

, 

𝑃𝑐(𝑋) =
4.013𝐸√𝑥3

2𝑥4
6

36
𝐿2

 (1 −
𝑥3

2𝐿
√

𝐸

4𝐺
), 

𝑃 = 6000𝐿𝑏, 

𝐿 = 14 in, 

𝛿𝑚𝑎𝑥 = 0.25 in, 

𝐸 = 30 × 106 psi, 

𝐺 = 12 × 106 psi, 

𝜏𝑚𝑎𝑥 = 13,600 psi, 

𝜎𝑚𝑎𝑥 = 30000 psi, 

Variable range: 

0.1 ≤  𝑥1, 𝑥4  ≤  2, 𝑥3 ≤ 10. 
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Figure 9: Schematic of the Welded Beam Structure with Indication of Design Variables 

Table 8: Comparison Results for the Welded Beam Design Problem 

Algorithm 
Optimum variables Optimum 

cost h l t b 

MHHO 0.18297 2.4073 9.5829 0.18298 1.4731 

HHO 0.175 2.621 9.585 0.18296 1.491 

ALO 0.18298 2.4073 9.5818 0.18298 1.4738 

AO 0.18728 2.4662 9.403 0.19055 1.515 

DOA 0.18298 2.4073 9.5818 0.18298 1.4733 

GWO 0.1829 2.4098 9.5827 0.18302 1.4736 

MVO 0.18262 2.4152 9.593 0.18296 1.4751 

WHO 0.18298 2.4073 9.5818 0.18298 1.4736 

WOA 0.1791 2.4572 9.9563 0.18066 1.5112 

WSO 0.17721 2.4993 9.5765 0.18319 1.4792 

DCSO 0.1823 2.4174 9.5854 0.18296 1.4739 

PSO 0.164214 4.033338 9.87542 0.223684 1.876522 

GA 0.206527 3.636602 9.95423 0.204201 1.838802 

Table 9: Statistical Results for the Welded Beam Design Problem 

Algorithm Best Mean Worst Std 

MHHO 1.4731 1.5056 1.5717 0.025956 

HHO 1.491 1.6128 2.1813 0.15605 

ALO 1.4738 1.4901 1.6343 0.030342 

AO 1.5150 1.6926 2.2152 0.16808 

DOA 1.4733 1.7108 3.8309 0.46821 

GWO 1.4736 1.4749 1.4795 0.0011788 

MVO 1.4751 1.4881 1.5129 0.010688 

WHO 1.4736 1.4768 1.5516 0.013334 

WOA 1.5112 1.8765 4.2271 0.50215 

WSO 1.4792 2.3264 3.9759 0.53178 

DCSO 1.4739 1.4806 1.5053 0.0061549 

PSO 1.8765 2.1233 2.3246 0.035104 

GA 1.8388 1.3662 2.0392 0.139689 

MHHO, HHO and competitive algorithms are applied to the welded beam design problem, and 

the results are presented in Table 8. Based on these results, MHHO has the best solution for 

this problem with values of variables equal (0.18297, 2.4073, 9.5829, 0.18298) and the 

corresponding objective function value 1.4731. The statistical results is reported in Table 9. 
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This table shows that MHHO performs well in terms of statistical signals. Figure 10 shows the 

convergence for this system. 

 

Figure 10: Convergence Curve of the MHHO for the Welded Beam  

Design Optimization Problem 

 

5. CONCLUSION 

In this work, a Modified Harris Hawks optimization (MHHO) algorithm is proposed using a 

mutation-selection strategy and crossover operator. This adaptability enables the algorithm to 

find optimal or nearly optimal solutions in a variety of optimization scenarios and search 

environments, potentially improving performance. Numerous restricted structural engineering 

design problems have been used to test the suggested approach, and it has also been compared 

to well-known metaheuristic algorithms and the standard HHO.  

Systematic experiments showed that compared to other well-known algorithms, the MHHO 

algorithm produced more dependable solutions. Moreover, the experimental results 

demonstrate that, in terms of optimization performance, MHHO performed better than the 

standard HHO and other metaheuristic algorithms. When compared to constrained engineering 

design benchmark functions, the MHHO performs significantly better than other state-of-the-

art algorithms, demonstrating its potential to handle a wide range of constrained optimization 

problems. 
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