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Abstract 

Discrete version of manifolds lead to some combinatorial structures of the manifold and it is this aspect of the 

problem that lead to rich investigations. Matroids came to fore purely as combinatorial theme with a firm geometry 

behind it. In our investigations we have considered discrete versions of low dimensional topological manifolds 

and developed few ideas relating to certain flows on them to locate invariant sets. Mainly the Anasov 

diffeomorphisms. It will be presented in two parts the first paper will be the description of matriods and their role 

in Linear algebraic setting and then graph theoretic setting. Not much is dealt when it comes to the geometry but 

we assume that the underlying manifold is smooth .We have specifically given one interesting case for the stability 

of the invariant sets. Also we have a family of algebraic varieties to this we want to attach a family of combinatorial 

objects and these are our convex polytopes 
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1. INTRODUCTION  

In this paper we have discussed the combinatorial aspects of Geometry and Topology coming 

from algebraic geometric background. All the manifolds that we have in our mind are smooth 

manifolds of dimension utmost four 

The problem of classification of topological spaces for 2- dimensional manifolds met with a 

great success and it was continued for higher dimensional analogus. For case m=3 the Poincare 

conjucture was an open problem till recently and now that this conjucture was settled by 

Peralman, around 2000 people started looking at Geometry and topology related problem 

differently.  

So in our paper we have given an exposition to highlight the convexity related sets of Euclidean 

space Rn. In this context we have discussed complex polytopes. Differential Geometry is 

something that characterizes topological manifolds into differential manifolds. In this sense 

any arbitrary smooth space is locally like Rn for some suitable n, the dimension of manifold, 

under algebraic geometric setting we have an analogus characterization as smooth algebraic 

varieties. We would like to highlight the convexity of the subsets of Rn in terms of algebraic 

geometry notions. The examples for such varieties are the unit circle and the unit sphere. 
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Loosely speaking the differential geometric view point are 1 & 2 dimensional smooth compact 

manifolds and sphere being 2-dimensional one which is closed oriented in terms of manifolds 

which are closed oriented and 2 dimensional they are all classified upto homeomorphism as 

sphere with k-handles. So a sphere with 1-handle is our Torus which is S1XS1 and then one 

would see them upto homeomorphism by attaching as many handles as one would wish 

 

2.  A COMBINATORIAL PROBLEM 

We have developed a combinatorial problem for a geometric observation the idea comes from 

the background of algebraic geometry notions that is of a family of ‘Algebraic varieties’ It is 

developed on the following border context 

Proposition 2.1: Suppose we have a family of algebraic varieties to this we want to attach a 

family of combinatorial objects and these are our “Convex polytopes” since they encircle the 

geometric information about the algebraic varieties. 

 Proposition 2.2: In the algebraic geometry area these problems fall under the category of 

Modili problems. We will describe this problem in its simplest terms and then focus our 

attention on convex polytopes. 

Remark 2.3: Proposition 2.1 and 2.2 is all about the modili space in lines in R2 and in general 

in Rn while Rn is characterized as an n-dimensional Euclidean space and as such any subset in 

Rn say E ∁ Rn under Euclidean setting will enjoy the same status as Rn, over R otherwise, we 

are interested in an arbitrary set of Rn  

Example 2.4: A circle (unit circle) in R2 an unit sphere S2 in R3 these are all Framzr geometric 

objects and at the same time are the subsets of R2, and their description in terms of convexity 

and polytopes, need clarification. 

Example 2.5: A set E in Rn is said to be convex if for any two points x, y in E, the line segment 

joining them given by 𝛼x+(1-𝛼 )y  for  𝛼 such that 0<𝛼<1 lies entirely in E. 

Example 2.6: If Rn is R2 ie for n=2 if it is a 2-dimensional plane and imagine a set of R2 whose 

vertices are as shown below 
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Let P ,Q and R are the interior points of Sin R2 then the line joining PQ,PR and QR except PR 

both PQ & QR as line segments completely lie in S But not PR because the dotted lines do not 

form the part of S joining P & R 

Example 2.7: In a 3-dimensional case imagine a set S1 in R3 as an unit circle, with a sub part 

removed as shown in following figure 

 

       

 

    

 

i) S uint convex cube in R3 

ii) Cube S not convex                                                   removed unit portion 

Remark 2.8: A convex hull is always convex. If A∁ Rn, convA = the ‘convex hull’ of A is 

convex 

 

3. ALGEBRAIC VARIETY 

Polynomials F(x) over R is an expression of the form F(x) = a0+a1x+……..anx
n   

a0, a1,…….an∈  R     x is an indeterminate  

If 𝛼 ∈R is such that f(𝛼) =0 then we say that 𝛼 is a zero if F(x)  If f(x1,x2,…….xn) =0 is a 

polynomial in n variables over R     then f(𝛼1,………𝛼n) =0         for (𝛼1,…….𝛼n)∈Rn  

then 𝛼 :(𝛼 1,…..𝛼n )∈ R n will form a zero of f(x1,……..xn): f(x)  (x:x1,……xn)  xi is a variable 

if f(x1,x2) =0 then f(𝛼)=0 implies 𝛼(𝛼1, 𝛼2) ∈R2 & g( X1,X2,X3) =0 then g(𝛽) =0 implies 𝛽(𝛽 

1,𝛽 2 , 𝛽 3 ) ∈ R3. Find all such 𝛼, 𝛽′𝑠  from the zero set associated with f and g in R2&R3. If we 

dig a bit in detail the underlying set is a polynomial ring R [X1,X2] & R[X1,……Xn] over R 

V(R) : {(a 1,……𝛼 n ): fi (𝛼1,……𝛼 n )} =0    for all i, , i= 1,2,…….n, 𝛼 i ∈ R } is called the 

zero set 

Recall S1 the unit circle 

As a subset of R2   S1 ={(x,y)∈R2, x2+y2=1 or x2+y2-1=0} 

S 2 ∁R3, S2 ={(x,y,z)∈R 3  / x2+y2+z2-1=0} 

The zero set of S1 in R 2 (over R) is  

 S1 = {(
1−𝑡2

1+𝑡2
,

2𝑡

1+𝑡2
): t∈R such that     (x(t),y(t)) t∈R,      x2(t) +y2(t) -1=0}These are well known 

parametrized of the subset of R2 & R3 as zero set and the same time a smooth ‘algebraic variety’ 
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Example 3.1:  If y 2  =x3 a polynomial in two variables f(x,y) =0 ie y2-x3 =0 over R then V(R) 

={(t2,t3): t∈  R } is the zero set . But it is not smooth at (0,0) this has a ……..(see the following 

fig). In general y 2 = x 3 + ax + b is an algebraic curve (Elliptic curves) an algebraic variety is 

a rapidly studied geometric objects for variety of applicants ringing from number theory to 

fluid mechanics. Analytical system to theoretical problems 

Remark 3.2: With these pre requisities we want to now understand the combinatorial nature 

of algebraic genetic objects 

Lemma 3.3:We started with objects in algebraic geometry setting as the zero sets, and 

examples for them were the unit circle, its higher analogue a 2- sphere , Curve given by f(x,y) 

= y 2 – x 3 =0 

Lemma 3.4: Convexity in algebraic geometry is very much noted in the geometric observation 

which we will highlite. As said earlier, we are not claming any result of our own but the 

exposition would help to at the Modili problem associated with the Modile space. 

Proposition 3.5: Let U be finite set in Z n Since Z n = { (m1,….mn) : mi ∈ Z  i = 1,2…..n}  then 

U may be convex on U may not be convex but its convex hull is convU     U is always convex 

Let x ∈  U and { ∈  Rn then the dot product x } and its maximum and minimum is attained on 

the boundary of conv U then we have the following proposition  

Proposition 3.6: With U & R n as above the K- hold sums {1/k(x 1 + x 2+ ……x k )  :  x i ∈U } 

converge to the convex hull of U as k→ ∞ 

 

4. CONCLUSION  

The discussion is all about the convex polytope their characterization in terms of algebraic 

varieties as in terms of algebraic geometry as zero sets of polynomial and later we have also 

presented few characterization involving the subsets of n-dimensional Euclidean space Rn. We 

have the proposition which clearly sums up as an important problem in algebraic geometry 

known as Modili problems. Thus we have considered algebraic varieties arising from compact 

Riemann surface of higher genera. 
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