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Abstract  

The exponential growth in data volume highlights the crucial need for efficient massive dataset processing, 

storage, and analysis. This paper examines the fundamental details of Apache Hadoop and Apache Spark, two 

popular large data processing frameworks. Their fundamental designs, data storage structures, processing 

techniques, fault tolerance systems, and general structural frameworks are all thoroughly examined. Apache 

Hadoop, an innovative framework, utilizes the Hadoop Distributed File System (HDFS) along with the 

MapReduce programming model to achieve distributed data storage and processing. On the other hand, Apache 

Spark, a more modern equivalent, uses in-memory processing and Resilient Distributed Datasets (RDDs) to 

improve performance. The comparative examination reveals the subtleties of each framework's data storage, 

processing models, and fault tolerance techniques. Spark can handle batch and real-time processing, which 

contrasts with Hadoop's conventional batch-oriented processing using MapReduce. The study investigates how 

these structural differences affect the system's overall efficiency, scalability, and simplicity of use. The results of 

this study add to our understanding of Hadoop and Spark's fundamental underpinnings. Organizations can choose 

a framework that best suits their unique data processing needs by providing information about their internal 

structures and processing techniques. 
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1. INTRODUCTION 

The big data sector is facing a significant problem in organizing, analyzing, and extracting 

insights from enormous datasets due to the extraordinary spike in data output in this period. 

This paper explores the complex structural aspects of two major frameworks: Apache Spark 

and Apache Hadoop. Standing as cornerstones in the vast field of distributed data processing, 

these frameworks are vital in managing the "5V" that make up big data: volume, velocity, 

variety, veracity, and value [1]. Table 1 displays Big Data Features. 

A deep comprehension of the architectural subtleties included in Hadoop and Spark is essential 

for navigating the complex routes found in big data environments. These frameworks are more 

than just technical fixes; they are critical decision points for companies trying to use distributed 

computing and deal with massive amounts of data. Moreover, they play a crucial role in 

facilitating the speed at which data is influx, controlling a variety of data formats, guaranteeing 

accuracy through fault tolerance systems, and finally producing value in the form of useful 

insights. 
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Table 1: Features of Big Data 

Features Description 

Volume 
The enormous volume of data that is produced and analyzed, which frequently exceeds the 

capability of conventional databases. 

Velocity 
The rate at which information is created, gathered, and analyzed in real-time or almost real-

time is a critical factor for applications that require speed and agility. 

Variety 
Flexible processing and storage solutions are necessary due to the wide range of data kinds 

and formats, including unstructured, semi-structured, and structured data. 

Veracity 
The data's correctness and dependability, considering the noise, inconsistencies, and 

uncertainties seen in big datasets. 

Value 
The useful information and practical insights gained from big data analytics highlight how 

crucial it is to wring value out of the mountains of data. 

 

2. APACHE HADOOP'S STRUCTURAL COMPONENTS AND APACHE SPARK'S 

FRAMEWORK ARCHITECTURE 

This section provides a detailed discussion of the Hadoop MapReduce and Spark operating 

principles. 

1. Apache Hadoop Structural Components 

Hadoop is a distributed computing framework, offering an open-source solution crafted in Java. 

This robust framework facilitates the establishment of a reliable, fault-tolerant, scalable, and 

adaptable architecture tailored for large-scale batch processing of big data. Leveraging the 

combined computational and storage capacities of clusters, Hadoop is designed to enable 

distributed storage and parallel processing, seamlessly handling extensive volumes of data [2]. 

Its architecture makes it an optimal solution for addressing the demands of large-scale data 

processing with efficiency and effectiveness. Figure 1 illustrates the three layers that constitute 

the Hadoop architecture. 

 

Fig 1: Hadoop architecture 
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A)  Hadoop MapReduce (MR):  

Hadoop framework is built on the programming style and processing engine known as 

MapReduce. Google first presented it, and Hadoop later adopted and used it to manage the 

distributed processing of huge datasets. The MapReduce approach divides work into three 

primary stages: the Map phase, Shuffle and Sort, and the Reduce phase. This makes processing 

data in parallel across a Hadoop cluster easier [3]. The MapReduce work steps are depicted in 

Figure 2. 

 

Fig 2: MapReduce in Hadoop 

1. Map Phase: 

In the Map phase, the incoming data is split up into smaller pieces, which are then processed 

independently by several simultaneous Map activities. The input data is transformed into a 

collection of intermediate key-value pairs for each Map job by applying a user-defined function 

known as the "Map" function. Following that, the key-value pairs produced by the Map jobs 

are sorted and classified according to their keys.[4] 

The main objective of the Map phase is to extract pertinent information that may be utilized in 

further processing and to divide the incoming data into digestible chunks. 

2. Shuffle and Sort: 

Following the completion of the Map phase, the framework sorts, and shuffles data. This entails 

grouping all values related to a certain key and rearranging the intermediate key-value pairs 

according to their keys. To prepare the data for the ensuing Reduce phase, this step is essential. 

3. Reduce Phase: 

After the Map phase, the grouped key-value pairs are processed in the Reduce phase by several 

simultaneous Reduce jobs. To compile, condense, or handle the intermediate data further, each 

Reduce job employs a user-defined "Reduce" function. The last collection of key-value pairs, 

or the processed result, is what comes out of the Reduce step. 
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Consolidating the data retrieved during the Map phase and producing the result in a 

comprehensible manner for the specified calculation are made possible by the Reduce phase of 

the system. 

B) Hadoop YARN:  

Several tasks are executed using Hadoop. Each of them requires resources to finish the tasks at 

hand concurrently and to manage these resources effectively, Hadoop has a crucial component 

called YARN. The YARN Architecture of Hadoop is depicted in Figure 3. 

The Resource Manager is the primary component in the Hadoop YARN architecture that 

oversees efficiently managing and allocating resources throughout the cluster. It decides how 

to distribute resources to various programs after receiving resource requests from them. A Node 

Manager is responsible for managing the resources on each node in the Hadoop cluster and 

informing the Resource Manager about the node's availability and health. Simultaneously, for 

each application in the cluster, an Application Master negotiates resources with the Resource 

Manager and works with Node Managers to carry out and oversee operations, overseeing the 

application's lifecycle with attention to detail [5]. 

 

Fig 3: Apache Hadoop YARN Architecture 

C) Hadoop Distributed File System (HDFS): 

The Hadoop file system, known as HDFS, divides data into several smaller parts and distributes 

each component among several nodes since it is not feasible to store a significant quantity of 

data on a single node. HDFS Design is shown in Figure 4. Large amounts of data may be 

streamed to user applications and stored on the HDFS. Thousands of computers in a big cluster 

handle a user application activity in addition to hosting directly connected storage. The 
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NameNodes and DataNodes that function as masters and workers respectively make up 

Hadoop's distributed file system. Keeping track of file blocks and directory structure, the 

NameNode is an essential part that handles namespace operations and metadata management. 

HDFS filenames are converted into lists of block IDs and DataNodes to enable effective data 

access. 

 

Fig 4: Hadoop Distributed File System Design 

2. Apache Spark: Structural Components 

Spark is a distributed general-purpose computing framework, that provides an open-source 

solution for large-scale data processing with language-integrated APIs in Scala, Python, Java, 

and R. Spark has upper-level libraries for various purposes, including machine learning, graph 

analysis, streaming, and structured data processing [15] as depicted in Figure 5. One of the 

most powerful features of Spark is its capability to process data on disk and in memory, making 

its performance outstands. In addition to its performance, Spark’s flexibility, ease of use, and 

compatibility with different cluster managers contribute to its popularity in big data processing. 

Figure 6 illustrates the architecture of Spark. 

 

Fig 5: Upper-level libraries in Spark 
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Fig 6: Spark’s high-level architecture 

A)  Application: 

A Spark application is a user program, that is typically written in languages like Scala, Java, 

Python, or R, that specifies a sequence of data processing tasks to be performed using the Spark 

framework.  

B)  Driver Program: 

A driver program is the main control process for a Spark application that utilizes Spark as a 

library and contains the main function where Spark context is created. The Spark context not 

only manages the execution of tasks but also creates and manipulates distributed datasets on 

the cluster which are known as Resilient Distributed Datasets (RDDs). Additionally, it has the 

Directed Acyclic Graph (DAG) scheduler, as depicted in Figure 7. The Spark context serves as 

a gateway connecting to the Spark cluster [17]; it coordinates the execution of tasks, 

communicates, and coordinates with the cluster manager, and collects results from worker 

nodes. 

 

Fig 7: Spark context 

A job is a set of computations, consisting of multiple tasks, that Spark performs on a cluster to 

get results to the driver program. Multiple jobs can be initiated by a Spark application. In Spark, 

a job is split into a directed acyclic graph (DAG) of stages where each stage is a set of tasks. A 

task is the smallest unit of work sent to an executor [15].  
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A DAG, which corresponds to the logical execution plan in Spark, is typically a graph, whose 

nodes represent the RDDs and edges represent transformations among RDDs. A DAG 

scheduler manages the scheduling and execution of tasks based on the logical execution plan 

represented by the DAG. 

RDDs are a fundamental component of Spark, representing an immutable collection of 

elements that can be operated on in parallel. RDDs offer two primary types of operations: 

transformations like map, filter, ReduceByKey, and GroupByKey [18], which create a new 

RDD from an existing one, and actions that trigger the computation and return results to the 

driver program like gather, count, and Count ByKey [18]. 

The task Scheduler in Spark is responsible for making decisions about which tasks to run, 

where to run them, and when to run them, based on the available resources that have been 

allocated by the cluster manager. 

C) Cluster manager: 

The cluster manager is responsible for managing and allocating the resources (CPU and 

memory) to applications based on their requirements. It also adopts several techniques to 

ensure fault tolerance. Spark currently supports different cluster managers [16] as seen in 

Figure 8:  

 Standalone:  A simple resource manager included with Spark as its built-in cluster manager. 

It is well suited to development and testing for small-scale deployments. 

 Apache Mesos: A general open-source resource manager, that provides an abstraction of 

resources, which facilitates their dynamic allocation to applications. It is efficient in large-

scale deployments.  

 Hadoop YARN: A resource manager in Hadoop, that can be used with Spark, to deploy and 

manage Spark applications in a Hadoop environment. This integration allows Spark to 

benefit from YARN capabilities.  

 Kubernetes: An open-source orchestration service, that serves as a powerful resource 

manager for Spark applications. Kubernetes allocates the resources dynamically based on 

the specified resource requirements and facilitates the integration of Spark into cloud-native 

architectures and large-scale deployments.  

 

Fig 8: Spark cluster manager 
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D)  Worker nodes: 

The worker nodes, as depicted in Figure 9, sometimes called the “salve nodes”, are responsible 

for executing the tasks that have been assigned to them by the cluster manager and the task 

scheduler. Each worker node runs an executor, which is a process that executes the task and 

returns the results of the execution to the Spark context.  

The number of worker nodes depends on the requirements and the needs of the application. 

Increasing the number of worker nodes contributes to handling a huge amount of data and 

increasing parallel processing.  

 

Fig 9: A worker node 

 

3. RELATED WORK  

Numerous comparative studies that address Spark and Hadoop technologies along with 

associated topics have been published. Table 2 presents a selection of these Comparatives along 

with the primary subjects they studied. 

Table 2: Comparative Studies of Hadoop VS Spark 

Shwet Ketu1 et al. [6] 

The effectiveness of Hadoop MapReduce and Spark has been observed 

through experimental studies to determine their applicability under various 

distributed computing environment restrictions. 

Muhammad Ali 

&Khurshed Iqbal [7] 

A comprehensive review of the benefits and drawbacks of two well-known 

technologies, Spark and Hadoop, about financial data management. 

S. Alkatheri et al. [8] 

The research evaluated several frameworks using performance parameters, 

including processing time, CPU use, latency, throughput, execution duration, 

job performance, scalability, and fault tolerance. The proposal is that 

businesses look closely at these performance metrics before deciding a 

framework. 

Khadija AZIZ et al. 

[12] 

The analysis of Twitter data using Spark performed better than Hadoop 

MapReduce, according to experimental results. Spark might evaluate data in 

just a few seconds, consider it as an excellent memory processing tool that 

enables real-time processing of streaming data. 

Y. Benlachmi and M. 

L. Hasnaoui [18] 

This research investigates the techniques of the Spark model as an alternative 

to Hadoop MapReduce for efficient analysis of big data in HDFS.  
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IV. A COMPARISON BETWEEN HADOOP AND SPARK 

Based on the many properties of these two technologies, highlighted in Table 3, a comparison 

between Spark and Hadoop is performed. 

Table 3: Comparison between Apache Hadoop and Spark 

1. Performance 

While reading and writing rely on disk operations in Hadoop, processing is done both 

in-memory and on-disk in Spark. The speed of processing is influenced by variations 

in processing technology. Since the processing for Spark is primarily done in-

memory, it often requires less time than Hadoop MapReduce, which depends more 

on disk operations. 

2. Execution 

Time for similar 

datasets 

Spark provides quicker execution speeds than Hadoop MapReduce. Figure 10 shows 

the comparison between different dataset sizes executed in both Hadoop and Spark. 

 
Fig 10: Execution time comparison of Apache Spark and Hadoop 

3. Fault 

Tolerance  

Hadoop uses a method of duplicating data over several nodes to provide strong fault 

tolerance. To do this, it splits up each file into chunks and duplicates it on many 

machines. Conversely, Spark has more fine-grained mechanisms; it makes use of 

Resilient Distributed Datasets (RDDs) lineage information, where lost partitions can 

be recovered without the need to recompute the whole dataset. Spark allows a more 

efficient recovery by only re-executing the affected computation.  Spark also 

supports optional checkpoints.  

4. Data 

Processing  

Using a sequential process, Hadoop processes data in batches. Reading data from the 

cluster, performing operations, and writing the outcomes back to the cluster are all 

part of the MapReduce paradigm. With Spark, on the other hand, batch and real-time 

processing are smoothly integrated. The cluster's data is read by it, real-time 

operations are carried out, and the treated data is quickly returned to the cluster. 

5. Cost  Hadoop is well known for being inexpensive because it uses open-source software 

and commodity hardware, which lowers infrastructure costs. Although Spark is more 

effective for some workloads, its dependency on in-memory processing and possible 

quicker development times might result in greater expenses. 

6. Data Storage  Because Hadoop can store enormous amounts of data, it was employed for data 

archiving. With Hadoop, a user's data may be stored for many years, as well as for a 
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dozen years in both original and archived form. 

Unlike Hadoop, Spark is not primarily designed for long-term storage; rather, it is 

focused on quick and effective data processing. To maximize their big data 

operations, organizations frequently combine Spark for iterative or real-time 

processing with Hadoop for long-term storage.[9] 

7. Accessing 

External data 

sources  

Hadoop primarily accesses data stored in its HDFS, however, it can be integrated 

with external storage systems like Hive and HBase. Spark can integrate well with 

various external storage systems, like HDFS, Cassandra, HBase, Amazon S3, and 

other sources. 

8. Usability Without an interactive mode, Hadoop is a sophisticated system that requires a 

significant amount of coding work to accomplish complex data processing jobs by 

requiring the usage of low-level APIs. Alternatively, Spark provides easy-to-use 

programming language APIs, making the development process more transparent and 

efficient. Because of its interactive mode, which offers intermediate feedback during 

queries and operations, Spark is easier to use and more responsive than the more 

complex MapReduce model. 

9. Scalability  Hadoop is very scalable; it can accommodate many nodes in the cluster without any 

problems. Notably, Yahoo used a large 42,000-node Hadoop cluster to illustrate its 

scalability. By contrast, the biggest verified Spark cluster consisted of 8,000 nodes. 

However, it is anticipated that cluster sizes will increase to accommodate changing 

throughput needs as big data continues to rise [10]. 

10. Security  Secure user access is ensured via authentication techniques like Kerberos, which are 

supported by both Hadoop and Spark. In addition, Access Control Lists are used by 

Hadoop for authorization. Spark has its authorization systems. Furthermore, both 

systems offer data encryption for the security of data while it is in transit and at rest 

[11]. 

11. Language 

Support  

Hadoop primarily supports Java for MapReduce programs, but it has a feature called 

Hadoop streaming which allows the support of different languages like Python, Perl 

and Ruby, while the primary language for Spark is Scala. Spark has APIs for other 

languages, including Java, Python, and R.  

12. Iterative 

Computation 

Iterative methods in standard Hadoop MapReduce suffer from costs since the 

processing mechanism is disk-based. Performance bottlenecks might arise since each 

loop includes writing interim findings to disk. Spark uses its in-memory processing 

power to excel in iterative calculation. It eliminates the requirement for repetitive 

reading from and writing to disk by caching intermediate data in memory. Because 

of this, Spark is far more effective than Hadoop MapReduce for iterative algorithms. 

 
Fig 11: Iterative workload handling in Hadoop    Fig. 12: Iterative workload 

handling in Spark 

13. Machine 

Learning 

Hadoop is capable of processing huge amounts of data; however, it does not have 

built-in machine learning libraries, but it can be used with another software which is 

Mahout for processing data. Mahout includes clustering, classification, and batch-

based collaborative filtering. But, Spark has a dedicated machine learning library 

called MLlib, which is divided into two packages: spark.mllib and spark.ml. The two 
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packages have a variety of machine learning tasks such as featurization, 

transformations, model training, model evaluation, and optimization [15]. 

Additionally, Spark’s memory processing makes it more suitable for machine 

learning tasks.  

14. Job scheduling 

and resource 

allocation 

Hadoop provides control over resource allocation and job scheduling, however, 

resource allocation in Hadoop is mainly static; meaning that resources are allocated 

at the beginning of the execution of the job and it is unlikely to change during 

execution. Spark, on the other hand, offers more advanced scheduling and 

optimization features, and has a dynamic resource allocation. 

15. Applications  Hadoop can be used in systems that require scalable storage and batch processing of 

data, while Spark is best adopted in streaming data processing to offer real-time 

analytics, machine learning, and interactive data exploration. 

 

5. REAL-WORLD IMPLEMENTATIONS: SPARK AND HADOOP 

Organizations are looking for strong techniques to store, handle, and effectively analyze large 

amounts of data within the ever-changing big data technology landscape. In this section, two 

paradigm-shifting examples—Netflix utilizing Apache Spark and Facebook utilizing Hadoop 

are displayed. 

 Facebook's Innovative Hadoop Utilization 

Facebook, one of the biggest social media networks in the world, uses Hadoop to highlight its 

unmatched scalability and dependability. The platform's ability to successfully use Hadoop is 

evidence of the technology's flexibility in responding to the ever-increasing demands of a data-

centric environment. Using Hadoop, Facebook has demonstrated how the technology can be a 

key component in managing and extracting value from massive datasets in high-traffic, real-

world applications. Facebook was able to overcome the obstacles presented by the exponential 

development of user-generated data [13]. 

 Netflix's Utilization of Apache Spark 

Providing millions of consumers with individualized content recommendations was a problem 

for Netflix, a worldwide streaming network. With its capacity to process data in memory, scale, 

and provide real-time analytics, Apache Spark was found to be the answer. 

Apache Spark's powerful characteristics enable Netflix's recommendation engine to be 

implemented. The streaming behemoth improves user experience by assuring quick and 

effective data handling by utilizing Spark's in-memory processing capabilities. Furthermore, 

by instantly analyzing user interactions with Spark Streaming, Netflix can provide its broad 

user base with timely and appropriate content recommendations in real time [14]. 

 

6. SPARK AND HADOOP INTEGRATION'S IMPORTANT POTENTIAL 

In the ever-developing field of big data, the way businesses manage enormous datasets has 

been completely transformed by the convergence of Spark and Hadoop, which has become a 

strategic need. Massive volumes of data may be stored in an unmatched way that is both 

scalable and fault-tolerant thanks to Hadoop's distributed file system (HDFS). However, the 
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speed and efficiency of its conventional MapReduce processing paradigm were constrained. 

To enhance Hadoop, Spark is a potent in-memory computing engine that offers data analytics 

with hitherto unattainable speed and capacity. 

Organizations may make use of both the powerful storage capabilities of HDFS and the 

blazingly quick processing power of Spark by combining Spark with Hadoop. Through this 

connection, organizations will be able to stay competitive in the big data age, get insights, and 

make educated choices by creating a consistent and efficient data processing environment. 

Spark and HDFS work together seamlessly to provide optimal resource usage, which allows 

activities to be carried out directly on the nodes that host the data. This optimizes the possibility 

for parallel processing while minimizing data transport costs, resulting in notable speed gains. 

Moreover, Spark's compatibility with the Hadoop ecosystem, which includes varied data 

formats, promotes efficient interchange and improves processing and storage efficiency [19]. 

YARN, which is the resource manager in Hadoop, can be used as a cluster manager for both 

Hadoop and Spark. This leads to enhanced resource utilization and sharing of resources across 

multiple applications. As mentioned previously, Spark can run on YARN to allow Spark 

applications to coexist with Hadoop jobs in the same cluster.  However, we should pay attention 

to the fact that when Spark is running on YARN with other shared services, performance might 

degrade. 

When integrating Hadoop and Spark, data processing pipelines should be designed to leverage 

the strengths of both Hadoop and Spark. For instance, Spark may be used for iterative machine 

learning tasks and real time analysis while Hadoop may be used for batch processing. The 

benefits of combining Hadoop and Spark go much beyond improved operational effectiveness. 

The paradigm of data processing is radically altered by this integration, opening new avenues 

for advanced data-driven applications, machine learning, and real-time analytics. 

 

7. CONCLUSION  

The rise of big data has necessitated parallel and distributed processing, along with advanced 

data analysis. Hadoop and Spark are two prominent frameworks that are capable of handling 

vast amounts of data. In this research, we examine the two frameworks, highlight their main 

features, and compare them in terms of their architectures and other properties, including 

performance, execution time, fault tolerance, data processing, cost, data storage, access to 

external data sources, usability, scalability, security, language support, iterative computation, 

machine learning, job scheduling, and applications.  

Hadoop and Spark should not be considered as two mutually exclusive alternatives, but rather 

complementary of each other. Hadoop outstands in batch processing and scalable storage 

capabilities, while Spark’s strengths lie in its in-memory processing, real-time analysis, and 

machine learning. Choosing between them depends on the requirements of the system, 

integrating them is yet another option that leverages the advantages of the two frameworks. 
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