

DOI: 10.5281/zenodo.12741775

69 | V 1 9 . I 0 7

CREATING COMBINED QUERIES IN SQL LANGUAGE

SH. PULATOV

Doctor of Technical Sciences, Associate Professor of Kokand State Pedagogical Institute, Uzbekistan.

E-mail: psharifjon@mail.ru

S. KHAIDAROVA

Candidate of Technical Sciences, Associate Professor of Kokand State Pedagogical Institute, Uzbekistan.

E-mail: hay-vb1952@umail.uz

Annotation

This article discusses methods for creating combined queries in SQL language and using the Union operator in it.

Keywords and Expressions: SQL language, UNION and UNION ALL operators, WHERE clause and SELECT

statement.

Currently, SQL (Structured Query Language) is the most popular database language. In

everyday life we have to work with databases, the SQL language is designed specifically for

this. Every time you select a name from your email address book, you are accessing a database.

And even when you insert your plastic card into an ATM, the PIN code and account balance

are checked through the database [Форта 2014].

Most SQL queries use a single SELECT statement to retrieve data from one or more tables.

SQL also allows you to run multiple queries (by using the SELECT statement multiple times)

and return the results as a single set. Such queries are usually called combined queries.

It should be noted that the result of combining two queries on the same table is essentially the

same as the result obtained by running a single query with multiple conditions in the WHERE

clause. In other words, any SELECT statement with multiple conditions WHERE can also be

considered a combined query.

Queries in SQL are combined using the UNION operator, which allows you to specify a

SELECT statement multiple times, returning a single set of results. Using the UNION operator

is quite simple. All you have to do is specify each SELECT statement and insert between them

is the UNION keyword.

Let's look at an example. Let's say you want to get a report containing information about all

customers from the states of Illinois, Indiana, and Michigan (the Customers table).

mailto:psharifjon@mail.ru
mailto:hay-vb1952@umail.uz

DOI: 10.5281/zenodo.12741775

70 | V 1 9 . I 0 7

You also want to include Fun4All customer data regardless of state. Of course, you can create

a WHERE condition that will satisfy these requirements, but in this case it is much more

convenient to use the UNION operator. As already mentioned, using the UNION operator

involves reusing SELECT statements. First, let's look at the individual components of a

combined query.

The first request looks like this:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_ state IN ('IL', 'IN', 'MI') ;

The first SELECT statement retrieves all rows related to the states of Illinois, Indiana, and

Michigan, the abbreviations specified in the IN statement.

The result of this query is shown below:

cust_name cust_contact cust_email

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Village Toys John Smith sales@villagetoys.com

Fun4All Jim Jones jjones@fun4all.com

The Toy Store Kim Howard NULL

mailto:sales@villagetoys.com
mailto:jjones@fun4all.com

DOI: 10.5281/zenodo.12741775

71 | V 1 9 . I 0 7

The second request looks like this:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_name = 'Fun4All';

The second SELECT statement uses a simple equality test to find all occurrences of the

Fun4All client. The result of this query is shown below:

cust_name cust_contact cust_email

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fun4All Jim Jones jjones@fun4all.com

Fun4All Denise L. Stephens dstephens@fun4all.com

To combine both queries, do the following:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL','IN','MI')

UNION

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_name = 'Fun4All';

This query contains the original SELECT statements separated by the UNION key word. It

causes the DBMS to execute both statements and output the results as a single result set. The

result of the combined query is shown below:

cust_name cust_contact cust_email

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fun4All Jim Jones jjones@fun4all.com

Fun4All Denise L. Stephens dstephens@fun4all.com

Village Toys John Smith sales@villagetoys.com

The Toy Store Kim Howard NULL

It's easy to see that when SELECT statements are executed individually, the first SELECT

statement returns three rows, and the second returns two. But when these two statements are

combined using the UNION key word, only four rows are returned and not five.

The UNION operator automatically removes all duplicate rows from the result set. Specifically,

there is a record for a Fun4All client from Indiana - this row was returned by both SELECT

statements. In the case of the UNION operator, the duplicate row is removed.

mailto:jjones@fun4all.com
mailto:dstephens@fun4all.com
mailto:jjones@fun4all.com
mailto:dstephens@fun4all.com
mailto:sales@villagetoys.com

DOI: 10.5281/zenodo.12741775

72 | V 1 9 . I 0 7

This is the default behavior of the UNION operator, but you can change it if you wish. If you

want all occurrences to be returned, you must use the UNION ALL operator rather than the

UNION operator.

Consider the following example.

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL', 'IN’, 'MI')

UNION ALL

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_name = 'Fun4All';

 The result of this query is shown below:

cust_name cust_contact cust_email

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Village Toys John Smith sales@villagetoys.com

Fun4All Jim Jones jjones@fun4all.com

The Toy Store Kim Howard NULL

Fun4All Jim Jones jjones@fun4all.com

Fun4All Denise L. Stephens dstephens@fun4all.com

When using the UNION ALL operator, the DBMS does not remove duplicates. Therefore, in

this example, there are five lines, and one of them is repeated twice.

This query can also be created using the WHERE clause:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL', 'IN', 'MI')

OR cust_name = 'Fun4All';

Combining queries created using the UNION operator and the WHERE clause produces the

same result. But comparing these examples showed that using the UNION operator can be

more inconvenient than the WHERE clause. But if your filter condition is more complex or

you need to retrieve data from multiple tables (not just one), then the UNION operator can

greatly simplify the process.

The SQL standard does not limit the number of SELECT statements that can be combined

using the UNION operator. However, it is better to refer to the documentation of your DBMS

and make sure that it does not impose any restrictions on the maximum allowable number of

instructions.

mailto:sales@villagetoys.com
mailto:jjones@fun4all.com
mailto:jjones@fun4all.com
mailto:dstephens@fun4all.com

DOI: 10.5281/zenodo.12741775

73 | V 1 9 . I 0 7

References

1) Бен Форта. Освой самостоятельно SQL за 10 минут, 4-е изд.: Пер. с англ.—М .: ООО “И.Д. Вильямс”,

2014. 288 с.

2) KHAIDAROVA, S. "CREATING SQL QUESTIONS IN RELATIONAL DATABASES." Ethiopian

International Journal of Multidisciplinary Research 11.02 (2024): 266-269.

3) Хайдарова, Сапияхон. "Создание SQL-запросов в реляционных базах данных". Вестник РГГУ.

Серия: Информатика. Информационная безопасность. Математика 3 (2020): 8-19.

4) Хайдарова Сапияхон. SQL тили: имкониятлари ва қўлланилиши. Ўқув қўлланма. “Инновация - Зиё”

нашриёти, 2020, - 120 бет.

5) Ҳайдарова, С. "APPLICATION OF SQL LANGUAGE IN CLIENT-SERVER

TECHNOLOGY." Экономика и социум 5-2 (2021): 1097-1101.

6) Khaidarova, S. "Sql-expressions That Manage Transactions." JournalNX: 307-310.

7) Pulatov, Sh, and S. Khaidarova. "CREATING SQL-SUB QUERIES IN RELATIONAL DATABASES." 湖
南大学学报 (自然科学版) 50.12 (2023).

8) Хайдарова C.. "СОЗДАНИЕ SQL-ЗАПРОСОВ В РЕЛЯЦИОННЫХ БАЗАХ ДАННЫХ" Экономика и

социум, no. 11 (114)-1, 2023, pp. 1078-1082.

9) Хайдарова, Сапияхон. "Методика оптимального построения информационных баз данных для

агропромышленных комплексов." (1994).

10) Хайдарова С. "СОЗДАНИЕ SQL-ПОДЗАПРОСОВ В РЕЛЯЦИОННЫХ БАЗАХ

ДАННЫХ" Экономика и социум, no. 11 (114)-2, 2023, pp. 977-981.

