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Abstract 

This study presents a novel methodology for addressing intuitionistic fuzzy bilevel linear fractional 

programming problems (IFBLFPP). The proposed approach utilizes pentagonal intuitionistic fuzzy numbers to 

represent the cost coefficients of the objective function, resource constraints, and technological coefficients. To 

solve the IFBLFPP, the problem is first transformed into an intuitionistic fuzzy bilevel linear programming 

problem (IFBLPP), which is subsequently converted into a crisp bilevel linear fractional programming problem 

(CBLFPP) through a rigorously defined accuracy function. Several theorems are established to demonstrate that 

an efficient solution of the CBLFPP also serves as an efficient solution for the IFBLFPP. By applying 

Zimmermann's technique along with suitable non-linear membership functions, the CBLFPP is further simplified 

into a single-objective linear programming problem. The practicality and effectiveness of the proposed 

methodology are illustrated through a numerical example. 

Keywords: Pentagonal Intuitionistic Fuzzy Number, Efficient Solution, Linear Membership Function, Bilevel 

Linear Programming. 

 

1. INTRODUCTION  

The Bilevel Linear Fractional Programming Problem (BLFPP) holds significant relevance in 

various real-world applications, as it facilitates the simultaneous optimization of multiple 

ratios pertaining to physical and economic quantities. This problem is applicable across 

diverse fields, including financial and corporate planning (e.g., debt-to-equity ratios, profit-

to-investment ratios), production planning (e.g., investment-to-sales ratios), healthcare and 

hospital management (e.g., cost-to-patient ratios, nurse-to-patient ratios), and university 

planning (e.g., student-to-teacher ratios). In such problems, it is typically assumed that the 

coefficients of the objective functions, constraints, and available resources are known with 

absolute certainty. 

However, the coefficients in these scenarios may not always be precise due to various factors 

such as measurement errors, market fluctuations, or uncontrollable variables like climate, 

traffic, or customer behavior. This uncertainty often leads decision-makers (DMs) to hesitate 

when determining the desired levels of the objective function and problem parameters. 

Consequently, DMs must contend with uncertainty and indecision. Fortunately, intuitionistic 

fuzzy linear fractional programming provides an effective approach for modeling such 

scenarios. This method enables the incorporation of imprecise or uncertain information, 

allowing DMs to make informed decisions under conditions of uncertainty.  
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In the realm of linear fractional programming (LFP), a variety of methods have been put forth 

to tackle the associated problems. Initially, esteemed researchers such as Charne and Cooper 

[1], Craven [2], and Schaible [3] focused on solving single objective LFP problems. Charne 

and Cooper introduced a method of variable transformation to address linear fractional 

problems, while Schaible and Craven offered detailed suggestions for LF optimization. 

Additionally, Antczak [4] proposed a modified objective method for solving nonlinear multi-

objective fractional programming problems. These contributions have significantly advanced 

the field of LFP problem-solving techniques. 

In the field of optimization, the concept of decision-making in a fuzzy environment was first 

introduced by Bellman and Zadeh [5]. Following this, numerous researchers have explored 

fuzzy linear fractional programming (FLFP) problems. Notable contributions have been made 

by Luhandjula [6], Dutta et al. [7,8], Chakraborty and Gupta [9], Pal et al. [10], Bhati and 

Singh [11], Guzel and Sivri [12], Guzel [13], Li et al. [14], Mehlawat et al. [15], Nachammai 

et al. [16], Pop and Stancu-Minasian [17], Duran Toksari [18], Jain et al. [19], Stanojević and 

Stancu-Minasian [20], Das et al. [21,22], Das and Edalatpanah [23], Das and Mondal [24], 

Mehra et al. [25], and Veeramani and Sumathi [26]. These authors have developed various 

methodologies for solving FLFP problems. Campos and Muñoz [27] and Zimmermann [28] 

introduced fuzzy programming techniques to solve crisp multi-objective linear programming 

problems. Additionally, Campos and Muñoz [27], along with Fortems and Roubens [29], have 

applied ranking functions to reduce fuzzy multi-objective linear programming problems to 

crisp equivalents. 

In the field of optimization, the pioneering work on decision-making in a fuzzy environment 

was introduced by Bellman and Zadeh [5]. Since then, numerous scholars have explored fuzzy 

linear fractional programming (FLFP) problems. Notable contributors to this area include 

Luhandjula [6], Dutta et al. [7,8], Chakraborty and Gupta [9], Pal et al. [10], Bhati and Singh 

[11], Guzel and Sivri [12], Guzel [13], Li et al. [14], Mehlawat et al. [15], Nachammai et al. 

[16], Pop and Stancu-Minasian [17], Duran Toksari [18], Jain et al. [19], Stanojević and 

Stancu-Minasian [20], Das et al. [21,22], Das and Edalatpanah [23], Das and Mondal [24], 

Mehra et al. [25], and Veeramani and Sumathi [26]. These researchers have proposed various 

methodologies for solving FLFP problems. Additionally, Campos and Muñoz, along with 

Zimmermann, introduced fuzzy programming techniques to address crisp multi-objective 

linear programming problems. Campos and Muñoz, as well as Fortems and Roubens, 

successfully converted fuzzy multi-objective linear programming problems into crisp 

equivalents using ranking functions. 

These studies highlight a range of innovative approaches and techniques designed to address 

the challenges associated with fuzzy multi-objective linear fractional programming 

(FMOLFP) and related problems. Veeramani and Sumathi [35] introduced a fuzzy approach 

for solving single-objective fully fuzzy linear fractional optimization problems. Arya and 

Singh [36, 37], along with Arya et al. [38], proposed a fuzzy method to handle deterministic 

multi-objective linear fractional (MOLF) optimization problems. Singh and Yadav [39] 

developed a methodology for solving intuitionistic fuzzy linear fractional programming 
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(IFLFP) problems by transforming them into equivalent crisp multi-objective linear fractional 

optimization problems (MOLFOP). To address these issues using triangular intuitionistic 

fuzzy parameters, Singh and Yadav [39] employed a fractional programming method 

originally developed by Charnes and Cooper in 1962 [1], utilizing component-wise 

optimization techniques to achieve a compromise solution. 

These studies contribute valuable insights to the field of fuzzy linear fractional programming 

and offer practical solutions to the challenges inherent in this specialized area. Veeramani and 

Sumathi's innovative approach introduces a fuzzy framework that effectively addresses single-

objective fully fuzzy linear fractional optimization problems. Arya et al. propose a fuzzy 

method that successfully tackles deterministic linear fractional optimization problems. Singh 

and Yadav, in contrast, focus on solving intuitionistic fuzzy linear fractional programming 

problems by transforming them into crisp multi-objective linear fractional optimization 

problems. By leveraging the fractional programming method developed by Charnes and 

Cooper, they effectively manage problems involving triangular intuitionistic fuzzy 

parameters. Their use of component-wise optimization ultimately results in a balanced 

compromise solution. 

 

2. DEFINITIONS AND PRELIMINARIES  

2.1. Intuitionistic Fuzzy number  

Definition 1 ([40]). Let X be a universe of discourse. An intuitionistic fuzzy set (IFS) 𝐴̃𝐼 in X 

is defined by a set of ordered triple 𝐴̃𝐼 = {(𝑥 , 𝜇𝐴̃𝐼  (𝑥), 𝑉𝐴̃𝐼  (𝑥)) ; 𝑥 𝜖 𝑋} , where 𝜇𝐴̃𝐼 , 𝑉𝐴̃𝐼 : X 

→ ]0 , 1[ are functions such that 0 ≤  𝜇𝐴̃𝐼  (𝑥) + 𝑉𝐴̃𝐼 ≤ 1 , ∀ 𝑥 𝜖 𝑋. The value of 𝜇𝐴̃𝐼  (𝑥) 

represents the degree of membership of the element 𝑥 belongs to X being in 𝐴̃𝐼 and 𝑉𝐴̃𝐼 is the 

degree of non – membership of the element 𝑥 belongs to X being in 𝐴̃𝐼. 𝜋 (x) = 1 - 𝜇𝐴̃𝐼  (𝑥) −

𝑉𝐴̃𝐼(𝑥), for all 𝑥 𝜖 X is called degree of hesitation for 𝑥 𝜖 X being in 𝐴̃𝐼. 

Definition 2 ([39, 41]). An intuitionistic fuzzy set 𝐴̃𝐼 = {(𝑥 , 𝜇𝐴̃𝐼  (𝑥), 𝑉𝐴̃𝐼  (𝑥)) ; 𝑥 𝜖 𝑋} is called 

an intuitionistic fuzzy number (IFN) if the following hold:  

(i). There exists m ∈ R such that 𝜇𝐴̃𝐼  (𝑚) = 1 and 𝑉𝐴̃𝐼  (𝑚) = 0 (m is called the mean value of𝐴̃𝐼) 
i.e., it is normal.  

(ii). 𝜇𝐴̃𝐼  and 𝑉𝐴̃𝐼  are piece-wise continuous functions from R to the closed interval [0, 1] and 0 

≤  𝜇𝐴̃𝐼  (𝑥) + 𝑉𝐴̃𝐼 ≤ 1, for all𝑥 𝜖 𝑅, with  

𝜇𝐴̃𝐼  (𝑥) = {

𝑔1(𝑥),           𝑚 − 𝑎 ≤ 𝑥 < 𝑚
1,                  𝑥 = 𝑚                   
ℎ1(𝑥),         𝑚 < 𝑥 ≤  𝑚 + 𝑏
0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 

Where 𝑔1(𝑥) and ℎ1(𝑥) are piece-wise continuous, strictly increasing and strictly decreasing 

function in [m – a, m) and (m, m + b] respectively and  
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𝑉𝐴̃𝐼  (𝑥) = {

𝑔2(𝑥),           𝑚 − 𝑎1 ≤ 𝑥 < 𝑚; 0 ≤  𝑔1(𝑥) + 𝑔2(𝑥)  ≤ 1 
0,                  𝑥 = 𝑚                                                                      

ℎ2(𝑥),         𝑚 < 𝑥 ≤  𝑚 + 𝑏1; 0 ≤ ℎ1(𝑥) + ℎ2(𝑥)  ≤ 1 
1,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                               

 

Where 𝑔2(𝑥) and ℎ2(𝑥) are piecewise continuous, strictly decreasing and strictly increasing 

function in [m − 𝑎1 , m] and [m, m + 𝑏1] respectively.  

The IFN 𝐴̃𝐼 is represented by 𝐴̃𝐼 = (m; a, b;𝑎1, 𝑏1)  

Remark 1.  

1. IFN is a convex set for the membership function 𝜇𝐴̃𝐼  (𝑥) i.e. 𝜇𝐴̃𝐼 (𝜆𝑥1 + (1 − 𝜆) 𝑥2) ≥  min 

(𝜇𝐴̃𝐼  (𝑥1), 𝜇𝐴̃𝐼  (𝑥2)) for all 𝑥1 , 𝑥2 ∈ R and 𝜆 ∈ [0, 1].  

2. It is a concave set for the non-membership function  𝑉𝐴̃𝐼  (𝑥) i.e. 𝑉𝐴̃𝐼  𝑥1 + (1 − 𝜆) 𝑥2) ≥ max 

(𝑉𝐴̃𝐼  (𝑥1), 𝑉𝐴̃𝐼  (𝑥2)), for all 𝑥1 , 𝑥2 ∈ R and 𝜆 ∈ [0, 1].  

2.2. Pentagonal Fuzzy number (PFN) and Pentagonal Intuitionistic Fuzzy Number 

(PIFN)  

Inaccuracies in measurement techniques and instrument reliability can lead to difficulties in 

accurate determining data related to real-world problems. For example, when measuring 

weather temperature and humidity simultaneously, variations in atmospheric temperature 

around 34°C can impact humidity levels. This variability gives rise to a unique type of fuzzy 

number known as the pentagonal fuzzy number. A pentagonal fuzzy number is a 5-tuple subset 

of the real number set R, characterized by five parameters. Denoted as 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) , 

where a3 represents the midpoint, and (a1, a2) and (a4, a5) denote the left and right endpoints of 

a3, respectively. In situations where complexities arise due to disturbances in the environment 

for various reasons, the phenomenon can be effectively modeled using pentagonal intuitionistic 

fuzzy numbers. 

A pentagonal intuitionistic fuzzy number of a intuitionistic fuzzy set 𝐴̃𝐼 is defined as 𝐴̃𝑃𝐼 = (𝑎1, 

𝑎2, 𝑎3, 𝑎4, 𝑎5; 𝑎1
1, 𝑎2

1, 𝑎3
1, 𝑎4

1, 𝑎5
1), where 𝑎𝑖, 𝑎𝑖

𝐼 ∈ R,i = 1, 2, 3, 4, 5  

Definition 3 (Pentagonal Fuzzy Number (PFN) [41]). A pentagonal fuzzy number 𝐴̃ = (𝑎1, 𝑎2, 

𝑎3, 𝑎4, 𝑎5)  with membership function 𝜇𝐴̃ (x) defined by  

𝜇𝐴̃ (x) = 

{
 
 
 
 

 
 
 
 𝑤1 (

𝑥− 𝑎1

𝑎2− 𝑎1
) , 𝑎1 ≤ 𝑥 ≤  𝑎2

1 − (1 − 𝑤1) 
𝑥− 𝑎3

𝑎3− 𝑎2
, 𝑎2 ≤ 𝑥 ≤ 𝑎3 

1,                𝑥 =  𝑎3                               

1 − (1 − 𝑤2)
𝑥− 𝑎3

𝑎4− 𝑎3
, 𝑎3 ≤ 𝑥 ≤ 𝑎4 

𝑤2  
𝑥− 𝑎5

𝑎4− 𝑎5
, 𝑎4  ≤ 𝑥 ≤ 𝑎5                   

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        
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With𝑤1, 𝑤2 ∈ [0, 1] and should satisfy the following condition: 

i. 𝜇𝐴̃ (x) is a piece wise continuous function having the range of interval [0,1]  

ii. 𝜇𝐴̃ (x) is strictly increasing and continuous function on [𝑎1, 𝑎2] and [𝑎2, 𝑎3]  

iii. 𝜇𝐴̃ (x) is strictly decreasing and continuous function on [𝑎3, 𝑎4] and [𝑎4, 𝑎5] Now, we can 

redefine pentagonal intuitionistic fuzzy number as follows:   

 

Fig 1: Pentagonal Intuitionistic Fuzzy Number 

Definition 4 (Pentagonal Intuitionistic Fuzzy Number (PIFN)). A pentagonal intuitionistic 

fuzzy number of a intuitionistic fuzzy set 𝐴̃𝐼 is defined as 𝐴̃𝑃𝐼 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5; 𝑎1
1, 𝑎2

1, 𝑎3
1, 

𝑎4
1, 𝑎5

1), where 𝑎𝑖, 𝑎𝑖
𝐼 ∈ R,i = 1, 2, 3, 4, 5 and whose membership and non-membership function 

are defined as  

𝑀𝐴̃𝑃𝐼 = 

{
 
 
 
 

 
 
 
 

0,                    𝑥 < 𝑎1            
1

2
 (

𝑥− 𝑎1

𝑎2− 𝑎1
) ,     𝑎1 ≤ 𝑥 ≤ 𝑎2

1

2
+ 

1

2
 (

𝑥− 𝑎2

𝑎3− 𝑎2
) ,     𝑎2 ≤ 𝑥 ≤ 𝑎3

1,               𝑥 =  𝑎3       
1

2
+ 

1

2
 (

𝑎4−𝑥

𝑎4− 𝑎3
) ,     𝑎3 ≤ 𝑥 ≤ 𝑎4

1

2
 (

𝑎5−𝑥

𝑎5− 𝑎4
) ,     𝑎4 ≤ 𝑥 ≤ 𝑎5

0,             𝑥 ≥  𝑎5       

 

And  
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𝑉𝐴̃𝑃𝐼 (x) = 

{
 
 
 
 
 

 
 
 
 
 

1,                    𝑥 < 𝑎1
1            

1

2
+ 

1

2
 (

𝑎2
1−𝑥

𝑎2
1− 𝑎1

1) ,     𝑎1
1 ≤ 𝑥 ≤ 𝑎2

1

1

2
 (

𝑎3
1− 𝑥

𝑎3
1− 𝑎2

1) ,       𝑎2
1 ≤ 𝑥 ≤ 𝑎3

1     

0,               𝑥 = 𝑎3
1       

1

2
(
𝑥− 𝑎3

1

𝑎4
1− 𝑎3

1) ,      𝑎3
1 ≤ 𝑥 ≤ 𝑎4       

1

1

2
+ 

1

2
 (

𝑥− 𝑎4
1

𝑎5
1− 𝑎4

1) ,   𝑎4
1 ≤ 𝑥 ≤ 𝑎5

1

1,             𝑥 > 𝑎5
1

 

The membership function of a PIFN can be shown in Fig. 1.  

Definition 5 (Arithmetic Operations on PIFNs). Let  𝐴̃𝑃𝐼 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5; 𝑎1
1, 𝑎2

1, 𝑎3
1, 𝑎4

1, 

𝑎5
1)  and 𝐵̃𝑃𝐼 = (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5; 𝑏1

1, 𝑏2
1, 𝑏3

1, 𝑏4
1, 𝑏5

1),  be two pentagonal intuitionistic fuzzy 

number, then the arithmetic operation are as follows: 

Addition:  𝐴̃𝑃𝐼⊕ 𝐵̃𝑃𝐼=  

(𝑎1+ 𝑏1, 𝑎2+ 𝑏2, 𝑎3+ 𝑏3, 𝑎4+ 𝑏4, 𝑎5+ 𝑏5; 𝑎1
1 + 𝑏1

1, 𝑎2
1 + 𝑏2

1, 𝑎3
1 + 𝑏3

1, 𝑎4
1 + 𝑏4

1, 𝑎5
1 + 𝑏5

1) 

Subtraction: 𝐴̃𝑃𝐼 ⊖ 𝐵̃𝑃𝐼=   

(𝑎1− 𝑏5, 𝑎2 − 𝑏4, 𝑎3 − 𝑏3, 𝑎4 − 𝑏2, 𝑎5 − 𝑏1; 𝑎1
1 − 𝑏5

1, 𝑎2
1 − 𝑏4

1, 𝑎3
1 − 𝑏3

1, 𝑎4
1 − 𝑏2

1, 𝑎5
1 − 𝑏1

1)  

Multiplication:  𝐴̃𝑃𝐼⊗ 𝐵̃𝑃𝐼= (𝑎1𝑏1 , 𝑎2𝑏2 , 𝑎3𝑏3, 𝑎4𝑏4 , 𝑎5𝑏5; 𝑎1
1 𝑏1

1 , 𝑎2
1𝑏2

1 , 𝑎3
1𝑏3

1 , 𝑎4
1𝑏4

1 , 

𝑎5
1𝑏5

1) 

Division: 𝐴̃𝑃𝐼 ⊘ 𝐵̃𝑃𝐼=  (
𝑎1

𝑏5
 , 
𝑎2

𝑏4
 , 
𝑎3

𝑏3
 , 
𝑎4

𝑏2
 , 
𝑎5

𝑏1
; 
𝑎1
1

𝑏5
1 , 

𝑎2
1

𝑏4
1 , 

𝑎3
1

𝑏3
1 , 

𝑎4
1

𝑏2
1 , 

𝑎5
1

𝑏1
1) 

Scalar multiplication:  

i. 𝑘𝐴̃𝑃𝐼= (𝑘𝑎1 , 𝑘𝑎2, 𝑘𝑎3 , 𝑘𝑎4, 𝑘𝑎5; 𝑘𝑎1
1 , 𝑘𝑎2

1 , 𝑘𝑎3
1 , 𝑘𝑎4

1 , 𝑘𝑎5
1), k > 0  

ii. 𝑘𝐴̃𝑃𝐼 = (𝑘𝑎5 , 𝑘𝑎4 , 𝑘𝑎3 , 𝑘𝑎2 , 𝑘𝑎1; 𝑘𝑎5
1 , 𝑘𝑎4

1 , 𝑘𝑎3
1 , 𝑘𝑎2

1 , 𝑘𝑎1
1), K < 0.  

Definition 6 (Ordering of PIFNs). Let 𝐴̃𝑃𝐼 = ( 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5; 𝑎1
1, 𝑎2

1, 𝑎3
1, 𝑎4

1, 𝑎5
1)  and 𝐵̃𝑃𝐼 

= (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5; 𝑏1
1, 𝑏2

1, 𝑏3
1, 𝑏4

1, 𝑏5
1) be two PIFNs and we define the ordering based on the 

components of PIFNs as follows:  

1. 𝐴̃𝑃𝐼 ≥ 𝐵̃𝑃𝐼⇒ (𝑎1 ≥ 𝑏1 , 𝑎2 ≥ 𝑏2 , 𝑎3 ≥ 𝑏3 , 𝑎4 ≥ 𝑏4 , 𝑎5 ≥ 𝑏5;  

      𝑎1
1 ≥ 𝑏1

1 , 𝑎2
1 ≥ 𝑏2

1 , 𝑎3
1 ≥ 𝑏3

1 , 𝑎4
1 ≥ 𝑏4

1 , 𝑎5
1 ≥ 𝑏5

1) 

2. 𝐴̃𝑃𝐼 ≤ 𝐵̃𝑃𝐼 ⇒ (𝑎1 ≤ 𝑏1 , 𝑎2 ≤ 𝑏2 , 𝑎3 ≤ 𝑏3 , 𝑎4 ≤ 𝑏4 , 𝑎5 ≤ 𝑏5;  

          𝑎1
1 ≤ 𝑏1

1 , 𝑎2
1 ≤ 𝑏2

1 , 𝑎3
1 ≤ 𝑏3

1 , 𝑎4
1 ≤ 𝑏4

1 , 𝑎5
1 ≤ 𝑏5

1) 
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3. 𝐴̃𝑃𝐼 = 𝐵̃𝑃𝐼 ⇒ (  𝑎1 = 𝑏1 , 𝑎2 = 𝑏2 , 𝑎3 = 𝑏3 , 𝑎4 = 𝑏4 , 𝑎5 = 𝑏5;  

        𝑎1
1 = 𝑏1

1 , 𝑎2
1 = 𝑏2

1 , 𝑎3
1 = 𝑏3

1 , 𝑎4
1 = 𝑏4

1 , 𝑎5
1 = 𝑏5

1) 

4. min (𝐴̃𝑃𝐼 , 𝐵̃𝑃𝐼) = 𝐴̃𝑃𝐼 , if 𝐴̃𝑃𝐼 ≤ 𝐵̃𝑃𝐼 or 𝐵̃𝑃𝐼 ≥  𝐴̃𝑃𝐼    

5. max (𝐴̃𝑃𝐼 , 𝐵̃𝑃𝐼) = 𝐴̃𝑃𝐼 , if 𝐴̃𝑃𝐼 ≥ 𝐵̃𝑃𝐼 or 𝐵̃𝑃𝐼 ≤  𝐴̃𝑃𝐼  

2.3. Accuracy function and ordering of PIFN  

Definition 7. Let 𝐴̃𝑃𝐼 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5; 𝑎1
1, 𝑎2

1, 𝑎3
1, 𝑎4

1, 𝑎5
1)  be a PIFN. The score function 

for the membership function 𝑀𝐴̃𝑃𝐼 is denoted by S (𝑀𝐴̃𝑃𝐼) and is defined by S (𝑀𝐴̃𝑃𝐼) = (𝑎1, 

2𝑎2, 3𝑎3, 2𝑎4, 𝑎5)∕9. The score function for the non-membership function 𝑉𝐴̃𝑃𝐼  is denoted by 

S (𝑉𝐴̃𝑃𝐼) and is defined by S (𝑉𝐴̃𝑃𝐼) = (𝑎1
1+ 2𝑎2

1 + 3𝑎3
1+ 2𝑎4

1+𝑎5
1)∕9. The accuracy function of 

𝐴̃𝑃𝐼denoted by f (𝐴̃𝑃𝐼) and  

Defined by f (𝐴̃𝑃𝐼) =   (
S (𝑀𝐴̃𝑃𝐼)+ S (𝑉𝐴̃𝑃𝐼)

2
) = (

(𝑎1+2𝑎2+ 3𝑎3+ 2𝑎4+ 𝑎5) + 𝑎1
1 + 2𝑎2

1+ 3𝑎3
1+ 2𝑎4

1+ 𝑎5
1

18
(  

The advantage of the accuracy function lies in its ability to establish an expected interval by 

utilizing two score functions to evaluate a single quantity. By taking the average of these scores, 

a more precise approximation can be obtained for comparison purposes. The subsequent 

theorem demonstrates that the accuracy function operates as a linear function. 

Definition 8 (Ordering of Accuracy Function). Let 𝐴̃𝑃𝐼 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5; 𝑎1
1, 𝑎2

1, 𝑎3
1, 𝑎4

1, 

𝑎5
1)  and 𝐵̃𝑃𝐼 = (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5; 𝑏1

1, 𝑏2
1, 𝑏3

1, 𝑏4
1, 𝑏5

1) Then  

1. f (𝐴̃𝑃𝐼) ≥ 𝑓 (𝐵̃𝑃𝐼) ⇒ 𝐴̃𝑃𝐼 ≥ 𝐵̃𝑃𝐼 

2. f (𝐴̃𝑃𝐼) ≤ 𝑓 (𝐵̃𝑃𝐼) ⇒ 𝐴̃𝑃𝐼 ≤ 𝑓 𝐵̃𝑃𝐼 

3. f (𝐴̃𝑃𝐼) = 𝑓 (𝐵̃𝑃𝐼)⇒ 𝐴̃𝑃𝐼 = 𝑓 𝐵̃𝑃𝐼 

4. min (𝐴̃𝑃𝐼 , 𝐵̃𝑃𝐼)  =  𝐴̃𝑃𝐼 , if 𝐴̃𝑃𝐼 ≤ 𝐵̃𝑃𝐼 or 𝐵̃𝑃𝐼 ≥  𝐴̃𝑃𝐼     

5. max (𝐴̃𝑃𝐼 , 𝐵̃𝑃𝐼)  = 𝐴̃𝑃𝐼 , if 𝐴̃𝑃𝐼 ≥ 𝐵̃𝑃𝐼 or 𝐵̃𝑃𝐼 ≤  𝐴̃𝑃𝐼  
 

3. LINEAR FRACTIONAL PROGRAMMING PROBLEM  

The general form of LFP problem can be written as  

Max F (x) = 
Σ𝑖=1
𝑚 𝑐𝑖 𝑥𝑖+𝛼

Σ𝑖=1
𝑚  𝑑𝑖 𝑥𝑖+ 𝛽

 = 
𝑃 (𝑥)

𝑄 (𝑥)
         (1) 

Subject to  

𝑔𝑖 (x) = ∑ 𝑎𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 ≤ 𝑏𝑗 , 𝑗 = 1 , 2 , 3 , … . . , 𝑛1; 

𝑔𝑖 (x) = ∑ 𝑎𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 ≥ 𝑏𝑗 , 𝑗 = 𝑛1 + 1, 𝑛1 + 2 , …… , 𝑛2; 
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𝑔𝑖 (x) = ∑ 𝑎𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 = 𝑏𝑗 , 𝑗 = 𝑛2 + 1, 𝑛2 + 2 , …… , 𝑛; 

x = (𝑥1 , 𝑥2 , ……., 𝑥𝑚) ≥ 0; 

where 𝑐𝑖 , 𝑑𝑖 , 𝛼 , 𝛽 , 𝑎𝑖𝑗 , 𝑏𝑗 ∈ R for i = 1 , 2 , 3 , …….., m , j = 1 , 2 , 2 , 3 , …….. , n , 

x = (𝑥1 , 𝑥2 , ……., 𝑥𝑚) ∈ Rm . 

Let S represent the set of all feasible solutions for equation (1). For a given value of x in S, the 

expression x ∈ S, Q (x) = ∑ 𝑑𝑖
𝑚
𝑖=1 𝑥𝑖 + 𝛽 may potentially equal zero. To prevent this scenario, 

it is necessary to ensure that either Q(x) > 0 for all x in S, or Q(x) < 0 for all x in S. 

For the sake of convenience, we will assume that the LFP meets the following condition:  

{Q (x) > 0, x ∈ S}          (2) 

Definition 9: A standard concave-convex fractional programming problem is defined as 

follows: P(x) is concave on set S with P(τ) ≥ 0 for some τ ∈ S, and Q(x) is convex with Q(x) > 

0 for all x ∈ S. 

Consider a standard concave-convex fractional program where P(x) is concave and positive for 

all x in set S, and Q(x) is convex with Q(x) greater than 0. 

If in problem (1), Q(x) is concave and positive in set S, and P(x) is concave and negative for 

each x in S, then -P(x) is convex and positive. 

max x∈S 
𝑃 (𝑥)

𝑄 (𝑥)
 ⇔ mix x∈S 

− 𝑃 (𝑥)

𝑄 (𝑥)
 ⇔ max x∈S 

𝑃 (𝑥)

− 𝑄 (𝑥)
 

The objective is to maximize the function P(x) while minimizing Q(x). This requires 

maximizing the function G(x) = P(x) - Q(x) under the same constraint as stated in the original 

problem. Therefore, we are faced with an equivalent problem presented below: 

Max G (x) = P (x) − (Q)         (3)  

Subject to  

𝑔𝑖 (x) = ∑ 𝑎𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 ≤ 𝑏𝑗 , 𝑗 = 1 , 2 , 3 , … . . , 𝑛1; 

𝑔𝑖 (x) = ∑ 𝑎𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 ≥ 𝑏𝑗 , 𝑗 = 𝑛1 + 1, 𝑛1 + 2 , …… , 𝑛2; 

𝑔𝑖 (x) = ∑ 𝑎𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 = 𝑏𝑗 , 𝑗 = 𝑛2 + 1, 𝑛2 + 2 , …… , 𝑛; 

           x = (𝑥1 , 𝑥2 , ……., 𝑥𝑚) ≥ 0; 

where 𝑐𝑖 , 𝑑𝑖 , 𝛼 , 𝛽 , 𝑎𝑖𝑗 , 𝑏𝑗 ∈ R for I = 1 , 2 , 3 , …….., m , j = 1 , 2 , 2 , 3 , …….. , n , 

x = (𝑥1 , 𝑥2 , ……., 𝑥𝑚) ∈ Rm . 
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Definition 10. A solution 𝑥̅ ∈ S is an optimal solution of problem (3) iff G (𝑥̅) ≥ G (x) for all 

x ∈ S.  

Definition 11. The Bilevel Programming Problem (BPP) is a decision problem in which vector 

variables x and y are controlled by two decision-makers: the leader and the follower. The 

variables x (upper level) and y (lower level) are decision variables in this hierarchical 

optimization structure, commonly found in various applications where the lower level's 

strategic decisions depend on the upper level's strategic decisions. A typical Bilevel 

Programming Problem (BPP) can be represented as follows: 

𝑚𝑖𝑛
𝑥
𝐹 (𝑥, 𝑦)         (4) 

Subject to 

{
 
 
 
 

 
 
 
 

   𝐺(𝑥) ≤ 0
 
 

𝑦 𝑠𝑜𝑙𝑣𝑒 

{
 
 

 
 

 
min 𝑓(𝑥, 𝑦)                 (𝐵𝑃𝑃)

 
𝑠. 𝑡
 

  𝑔(𝑥, 𝑦) ≤ 0
 
 

 

Mathematically, solving a Bi-level Programming Problem (BPP) involves identifying a 

solution to the problem at the higher level known as the leader's (or ouster's) problem. In this 

context, for each value of x, y represents the solution to the problem at the lower level, referred 

to as the follower's (or inner's) problem. Here, x ∈ Rn1, y ∈ Rn2; F, f: Rn1+n2 →Rm1 serve as 

the objective functions at the upper (and lower) level respectively, while G, g: Rn1+n2 →Rm2 

represent the constraint functions at the upper (and lower) level. 

 

4. INTUITIONISTIC FUZZY BILEVEL LINEAR FRACTIONAL PROGRAMMING 

PROBLEM  

The general form of the Intuitionistic Fuzzy Bilevel Linear Fractional Programming Problem 

(IFBLFPP) can be expressed as follows: 

Maximize 𝐹̃ (x) = (
𝑃̃1(𝑥)

𝑄̃1(𝑥)
 )        (5) 

Subject to  

Maximize 𝐹̃ (x) = (
𝑃̃2(𝑥)

𝑄̃2(𝑥)
) 

𝑔̃𝑖 (x) = ∑ 𝑎̃𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 ≤ 𝑏̃𝑗 , 𝑗 = 1 , 2 , 3 , … . . , 𝑛1; 

𝑔̃𝑖 (x) = ∑ 𝑎̃𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 ≥ 𝑏̃𝑗 , 𝑗 = 𝑛1 + 1, 𝑛1 + 2 , …… , 𝑛2; 
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𝑔̃𝑖 (x) = ∑ 𝑎̃𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 = 𝑏̃𝑗 , 𝑗 = 𝑛2 + 1, 𝑛2 + 2 , …… , 𝑛; 

           x = (𝑥1 , 𝑥2 , ……., 𝑥𝑚) ≥ 0; 

where 𝑃̃𝑖 (x) = ∑ 𝐶̃𝑖𝑟
𝑚

𝑖=1
𝑥𝑖 ⊕ 𝛼̃𝑟 , 𝑄̃𝑟 (x) = ∑ 𝑑̃𝑖𝑟

𝑚

𝑖=1
𝑥𝑖⊕ 𝛽𝑟 , r = 1, 2 , ……. , K and 𝐶̃𝑖𝑟 , 

𝑑̃𝑖𝑟 , 𝛼̃𝑟 , 𝛽𝑟 , 𝑎̃𝑖𝑗 , 𝑏̃𝑗 , i = 1 , 2 , …….. , m and j = 1 , 2 , ……n are PIFNs. 

x = (𝑥1 , 𝑥2 , ……., 𝑥𝑚) ∈ Rm . 

4.1. Linearization of (IFBLFPP) to (IFBOLAFPP)  

To optimize our results, it is necessary to maximize the function 𝐺̃𝑟 (x) = 𝑃̃𝑟 (x) − 𝑄̃𝑟 (x) for 

each value of r ranging from 1 to K, while adhering to the constraint outlined in problem (5) 

that requires 𝑄̃𝑟 (x) to be greater than 0. 

 This leads us to an equivalent problem presented below: 

Maximize 𝐺̃ (x) = (𝐺̃1 (x))        (6)  

Subject to  

Maximize 𝐺̃ (x) = (𝐺̃2 (x))  

𝑔̃𝑖 (x) = ∑ 𝑎̃𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 ≤ 𝑏̃𝑗 , 𝑗 = 1 , 2 , 3 , … . . , 𝑛1; 

𝑔̃𝑖 (x) = ∑ 𝑎̃𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 ≥ 𝑏̃𝑗 , 𝑗 = 𝑛1 + 1, 𝑛1 + 2 , …… , 𝑛2; 

𝑔̃𝑖 (x) = ∑ 𝑎̃𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 = 𝑏̃𝑗 , 𝑗 = 𝑛2 + 1, 𝑛2 + 2 , …… , 𝑛; 

           x = (𝑥1 , 𝑥2 , ……., 𝑥𝑚) ≥ 0; 

where 𝐺̃𝑟 (x) = 𝑃̃𝑟 (x) - 𝑄̃𝑟 (x) , 𝑃̃𝑟 (x) = ∑ 𝐶̃𝑖𝑟
𝑚

𝑖=1
𝑥𝑖 ⊕ 𝛼̃𝑟 , 𝑄̃𝑟 (x) = ∑ 𝑑̃𝑖𝑟

𝑚

𝑖=1
𝑥𝑖⊕ 𝛽𝑟 , r = 1, 

2 , ……. , K and 𝐶̃𝑖𝑟 , 𝑑̃𝑖𝑟 , 𝛼̃𝑟 , 𝛽𝑟 , 𝑎̃𝑖𝑗 , 𝑏̃𝑗 , i = 1 , 2 , …….. , m and j = 1 , 2 , ……n are PIFNs. 

x = (𝑥1 , 𝑥2 , ……., 𝑥𝑚) ∈ Rm . 

Definition 12. Let S represent the set of feasible solutions for equation (6) (equivalent to 

equation (5)). An efficient solution 𝑥̅ ∈ S is defined as a solution of equation (6) where there 

does not exist another solution x* ∈ S such that 𝐺̃𝑟 (x*) ≥ 𝐺̃𝑟 (𝑥̅), r = 1, 2,…., K and 𝐺̃𝑟 (x*) > 

𝐺̃𝑟 (𝑥̅),  for at least one r. This criterion establishes the efficiency of a solution within the set 

S. 

4.2 Steps for Solve Linear Bilevel Programming Problem (LBPP) 

Step1: Constraint region of the BLPP: 

S = {(x, y) : x ∈ X, y ∈ Y, A1 x + B1 y ≤ b1, A2 x + B2 y ≤ b2} 
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Step2: Follower’s feasible set for each fixed x ∈ X: 

S(x) = {y ∈ Y : B2 y ≤ b2 − A2x} 

Step3: Follower’s rational reaction set: 

P(x) = {y ∈ Y: y ∈ argmin [f (x, ý): ý ∈ S(x)]} 

Step4: Inducible Region: 

IR = {(x, y) ∈ S, y ∈ P(x)} 

Step5: When S and P(x) are non-empty, the BLPP can be written as: 

min {F (x, y): (x, y) ∈ IR} 

4.3. Conversion of (IFBOLPP) to (crisp BOLFPP)  

Now using the accuracy function the model in (6) is transformed to the following crisp 

BOLFPP.  

Maximize G(x) = ((𝐺1 (x))        (8)  

Subject to  

Maximize G(x) = (𝐺2 (x)) 

𝑔𝑖 (x) = ∑ 𝑎!𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 ≤ 𝑏

!
𝑗 , 𝑗 = 1 , 2 , 3 , … . . , 𝑛1; 

𝑔𝑖 (x) = ∑ 𝑎!𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 ≥ 𝑏

!
𝑗 , 𝑗 = 𝑛1 + 1, 𝑛1 + 2 , …… , 𝑛2; 

𝑔𝑖 (x) = ∑ 𝑎!𝑖𝑗
𝑚

𝑖=1
𝑥𝑖 =  𝑎

!
𝑗 , 𝑗 = 𝑛2 + 1, 𝑛2 + 2 , …… , 𝑛; 

           x = (𝑥1 , 𝑥2 , ……., 𝑥𝑚) ≥ 0; 

where 𝐺𝑟 (x) = 𝑃𝑟 (x) - 𝑄𝑟 (x) , 𝑃𝑟 (x) = ∑ 𝐶!𝑖𝑟
𝑚

𝑖=1
𝑥𝑖 + 𝛼!𝑟 , 𝑄𝑟 (x) = ∑ 𝑑!𝑖𝑟

𝑚

𝑖=1
𝑥𝑖+ 𝛽!

𝑟
 and the 

accuracy functions values as f (𝐶̃𝑖𝑟) = 𝐶 !𝑖𝑟f (𝑑̃𝑖𝑟) = 𝑑!𝑖𝑟 , f (𝛼̃𝑟) = 𝛼!𝑟 , f (𝛽𝑟) = 𝛽!
𝑟
 , f (𝑎̃𝑖𝑗) = 

𝑎!𝑖𝑗, f (𝑏̃𝑗) = 𝑏!𝑗 for r = 1 , 2 , …….. K. 

To efficiently solve the crisp Bilevel linear programming problem (8), we will follow the steps 

outlined below: 

Step 1: Begin by solving the crisp Bilevel linear programming problem one objective function 

at a time, while considering all constraints and disregarding any other objective functions. 

Repeat this process k times for k different objective functions. Let the solutions obtained be 

denoted as X1, X2, ….. , XK respectively. Define X as the set {X1 , X2 , ….. , XK}. By following 

this systematic approach, we can effectively tackle the crisp Bilevel linear programming 

problem and arrive at optimal solutions for each objective function. 

Step 2. Find the value of the objective function𝐺𝑟  (𝑥), =  𝑃𝑟 (𝑥) − 𝑄𝑟 (𝑥), r = 1, 2,……,K at 
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each point in X. Form a payoff matrix.  

Step 3. Find the minimum and maximum value of each objective function. Let 𝐿𝑟 be the 

minimum and 𝑈𝑟 be the maximum value of 𝑃𝑟 (𝑥) - 𝑄𝑟 (𝑥) i.e. 𝐿𝑟 = min {𝑃𝑟 (𝑥) − 𝑄𝑟 (𝑥) ∶ x 

∈ X} and 𝑈𝑟 = max {𝑃𝑟  (𝑥) − 𝑄𝑟 (𝑥) ∶ x ∈ X}.  

Step 4. In order to maximize the objective function 𝐺𝑟 (𝑥) = 𝑃𝑟  (𝑥) − 𝑄𝑟 (𝑥), r = 1, 2,……, K, 

where r = 1, 2,……, K, it is essential to strive towards reaching the upper bound for each 

objective. As the solution approaches the upper bound, the satisfaction level of the Decision 

Maker (DM) will increase. Ultimately, the DM will be fully satisfied when the objectives 

reach their upper bounds. Let μ_(𝑈𝑟) represent the degree of attainability of the upper bound 

𝑈𝑟for the objective function 𝐺𝑟 (𝑥) = 𝑃𝑟  (𝑥) − 𝑄𝑟 (𝑥). 

Then 𝜇𝑈𝑟(𝐺𝑟) = 1, 2 ,……, K is defined as  

𝜇𝑈𝑟(𝐺𝑟(𝑥)) = {

0,                     𝐺𝑟(𝑥) <  𝐿𝑟            
(𝐺𝑟(𝑥))

𝑡− 𝐿𝑟
𝑡

𝑈𝑟
𝑡− 𝐿𝑟

𝑡  ,   𝐿𝑟  ≤ 𝐺𝑟 (𝑥) ≤ 𝑈𝑟

1,                    𝐺𝑟 (𝑥) > 𝑈𝑟           

 

where t > 0 is prescribed by the DM.  

Our current challenge is to enhance the satisfaction level of the decision maker while adhering 

to the specified constraint. To achieve this, we will implement Zimmermann's technique. 

4.4. Zimmermann’s technique  

Let 𝜆  = min {𝜇𝑈𝑟(𝐺𝑟(𝑥)), r = 1, 2}.  

The Balanced Objective Linear Programming Problem (BOLPP) seeks to develop an optimal 

plan that maximizes the decision maker's (DM) satisfaction by achieving a balanced 

consideration of both objectives and constraints. The primary goal is to attain a high degree of 

equilibrium between the objectives and the associated constraints. This concept can be 

represented by the following model: 

max     𝜆       

Subject to  

𝜇𝑈𝑟(𝐺𝑟(𝑥)) ≥ 𝜆, r = 1, 2 ; 

 ∑ 𝑎𝑖𝑟
𝑚
𝑖=1 𝑥𝑖 ≤ 𝑏𝑗, 𝑗 = 1 , 2 , … . . , 𝑛1;  

∑ 𝑎𝑖𝑟
𝑚
𝑖=1 𝑥𝑖 ≥ 𝑏𝑗, 𝑗 = 𝑛1 + 1, 𝑛1 + 2 , …… , 𝑛2;  

∑ 𝑎𝑖𝑟
𝑚
𝑖=1 𝑥𝑖 = 𝑏𝑗 , 𝑗 = 𝑛2 + 1, 𝑛2 + 2 , …… , 𝑛;  

Thus, the problem is reduced to the following single objective NLPP or LPP which can be 

solved easily by suitable crisp NLP or crisp LPP method.  

max     𝜆       
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Subject to  

(𝐺𝑟(𝑥))
t - 𝐿𝑟

𝑡  ≥ 𝜆 (𝑈𝑟
𝑡 - 𝐿𝑟

𝑡 ), r = 1,2; 

∑ 𝑎𝑖𝑟
𝑚
𝑖=1 𝑥𝑖 ≤ 𝑏𝑗, 𝑗 = 1 , 2 , … . . , 𝑛1;  

∑ 𝑎𝑖𝑟
𝑚
𝑖=1 𝑥𝑖 ≥ 𝑏𝑗, 𝑗 = 𝑛1 + 1, 𝑛1 + 2 , …… , 𝑛2;  

∑ 𝑎𝑖𝑟
𝑚
𝑖=1 𝑥𝑖 = 𝑏𝑗 , 𝑗 = 𝑛2 + 1, 𝑛2 + 2 , …… , 𝑛;  

𝑥𝑖 ≥ 0, i = 1, 2 , ……… , m. 

 

5. APPROACH for (IFBOFLPP)  

The solution technique discussed in Section 6 can be summarized as an algorithm as given 

below: 

Step 1: Begin by modeling the intuitionistic fuzzy Bilevel linear fractional programming 

problem (IFBOFLPP) involving PIFNs, as outlined in problem (5). 

Step 2: Proceed to convert the IFBOFLPP from problem (5) to the IFBOLPP as described in 

(6). 

Step 3: Utilize the accuracy function on problem (6) to determine the corresponding CBLFPP 

(8). 

Step 4: Solve the CBLFPP (8) by focusing on one objective function at a time and disregarding 

all others. Repeat this process k times for k different objective functions. Let the solutions 

obtained be denoted as X1, X2 respectively, and let X = {X_r ∶ r = 1, 2}. 

In this manner, we can systematically address and solve the complex challenges presented by 

the intuitionistic fuzzy Bilevel linear fractional programming problem, ensuring a thorough 

and effective approach to finding optimal solutions. 

Step 5. Find the value of objective function 𝐺𝑟 (𝑥) = 𝑃𝑟 (𝑥) − 𝑄𝑟 (𝑥), r = 1, 2 at each point 

obtained in Step 4.  

Step 6. Find the minimum maximum value of each objective function.  

Let 𝐿𝐾 = min {𝑃𝑟 (𝑥) − 𝑄𝑟 (𝑥) ∶ x ∈ X} and 𝑈𝑟 = max {𝑃𝑟 (𝑥) − 𝑄𝑟 (𝑥) ∶ x ∈ X}.  

Step 7. Using Zimmermann’s technique discussion in Step 6 transfer the CBLFPP into single 

objective NLPP or LPP.  

Step 8. Using any method or software solves the problem.  

Table 1:  Payoff Matrix 

 𝑮𝟏 𝑮𝟐 

𝒙𝟏 8.66 4.60 

𝒙𝟐 8.32 7.34 

𝒙𝟑 0.40 0.27 
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6. COMPUTATIONAL WORK  

A numerical example with two objective functions, three constraints and three variables are 

considered to illustrate the solution procedure Sahoo et el., [42].  

Max 𝐹̃1(𝑥) = 
6̃𝑥1+7̃𝑥2+5̃𝑥3+4̃

7̃𝑥1+5̃𝑥2+4̃𝑥3
        (9) 

Subject to 

Max 𝐹̃2(𝑥) = 
7̃𝑥1+8̃𝑥2+9̃𝑥3

5̃𝑥1+4̃𝑥2+6̃𝑥3+ 3̃
  

 4̃𝑥1 + 5̃𝑥2 + 7̃𝑥3 ≥ 4̃ 

5̃𝑥1 + 8̃𝑥2 + 6̃𝑥3 ≤ 20̃, 

6̃𝑥1 + 7̃𝑥2 + 4̃𝑥3 = 15̃ , 

Where 3̃ = (1, 2, 3, 4, 5; 1.3, 2.6, 3, 4.1, 5.1), 4̃ = (2, 3, 4, 5, 6; 2.2, 3.2, 4, 6, 7)  

             5̃ = (4, 4.5, 5, 6.2, 7; 3.5, 4, 5.5, 6.5, 7), 6̃ = (4, 5, 6, 7, 8; 3, 4, 6, 8, 9),  

7̃ = (5, 6, 7, 10, 12; 3, 5, 7, 9, 13), 8̃ = (6, 7, 8, 9, 10; 5, 6, 8, 10, 11),  

9̃ = (7, 8, 9, 10, 12; 6.1, 7, 9.5, 11, 13)  

20̃ = (17.4, 18, 20, 21, 22; 18.4, 19, 20, 22, 24),  

15̃ = (13, 14, 15, 16, 18; 12.6, 13, 15, 17, 20)  

Using method (6) the above problem converted to  

     Max  𝐺̃1 (𝑥) = (6̃𝑥1 + 7̃𝑥2 + 5̃𝑥3 + 4̃) − (7̃𝑥1 + 5̃𝑥2 + 4̃𝑥3)    (10)  

Subject to 

Max  𝐺̃2 (𝑥) = (7̃𝑥1 + 8̃𝑥2 + 9̃𝑥3) − (5̃𝑥1 + 4̃𝑥2 + 6̃𝑥3 + 3̃) 

 4̃𝑥1 + 5̃𝑥2 + 7̃𝑥3 ≥ 4̃, 

5̃𝑥1 + 8̃𝑥2 + 6̃𝑥3 ≤ 20̃ 

6̃𝑥1 + 7̃𝑥2 + 4̃𝑥3 = 15̃ 

By using accuracy function and simplifying, Problem (10) reduces to  

         Max 𝐺1 (𝑥) = −1.5𝑥1 + 2.2𝑥2 + 1.1𝑥3 + 4.2,      (11)  

         Subject to 

         Max 𝐺2 (𝑥) = 2.2𝑥1 + 3.8𝑥2 + 3.2𝑥3 − 3.1,  

         4.2𝑥1 + 5.3𝑥2 + 7.5𝑥3 ≥ 4.2,  

         5.3𝑥1 + 8𝑥2 + 6𝑥3 ≤ 20.1  

         6𝑥1 + 7.5𝑥2 + 4.2𝑥3 = 15.2  
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Solving each objective function w.r.t. all constraints in problem (11) at a time, we get the 

following:  

(i) For the first objective function, the ideal solution is obtained as:  

  𝑥1= 0.000000, 𝑥2 = 2.026667, 𝑥3 = 0.000000 and 𝐺1 = 8.658667  

(ii) For the second objective function, the ideal solution is obtained as:  

 𝑥1 = 0.000000, 𝑥2 = 0.5947368, 𝑥3 = 2.557018 and 𝐺2 = 7.342456  

A pay-off matrix is formulated as (see Table 1).  

From the pay-off matrix (Table 1) lower bound and upper bound are estimated as 

 𝐿1 = 0.4,  𝑈1 = 8.65,   𝐿2 = 0.27,   𝑈2 = 7.34,   

The membership functions of the objectives 𝐺1 and 𝐺2 are defined as:  

𝜇𝐺1(𝑥) = {

0,                           𝐺1(x) < 0.4              
(𝐺1(x))

𝑡−(0.4)𝑡

(8.65)𝑡− (0.4)𝑡
,      0.4 ≤ 𝐺1(x) ≤ 8.65

1,                           𝐺1(x) > 8.65            

 

𝜇𝐺2(𝑥) = {

0,                           𝐺2(x) < 0.27              
(𝐺2(x))

𝑡−(0.27)𝑡

(7,34)𝑡− (0.27)𝑡
,      0.27 ≤ 𝐺2(x) ≤ 7.34

1,                           𝐺2(x) > 7.34            

 

By Zimmermann’s approach, Problem (11) reduces to         

Subject to 

 𝐺1(x) ≥ 𝜆, 𝐺2(x) ≥ 𝜆,  

4.2𝑥1+ 5.3𝑥2 + 7.5𝑥3 ≥ 4.2,  

5.3𝑥1 + 8𝑥2 + 6𝑥3  ≤ 20.1,  

6𝑥1 + 7.5𝑥2 + 4.2𝑥3 = 15.2,  

  𝑥1, 𝑥2 , 𝑥3 ≥ 0.  

Thus, problem is reduced to the following single objective NLPP:  

max     𝜆                (12)  

Subject to (−1.5𝑥1 + 2.2𝑥2 + 1.1𝑥3 + 4.2)t  − (0.4)t  ≥ 𝜆 (8.65t   − 0.4t),  

(2.2𝑥1 + 3.8𝑥2 + 3.2𝑥3 − 3.1) t − (0.27) t ≥ 𝜆 (7.34 t − 0.27 t),  

4.2𝑥1 + 5.3𝑥2 + 7.5𝑥3 ≥ 4.2,  

5.3𝑥1 + 8𝑥2 + 6𝑥3 ≤ 20.1,  

6𝑥1 + 7.5𝑥2 + 4.2𝑥3 = 15.2  

𝑥1 , 𝑥2 , 𝑥3 ≥  0.  
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Case 1: Taking t = 0.25 and using LINGO software, the optimal solution of problem (12), is 

obtained as 𝑥1 = 1.081,  𝑥2 = 0, 𝑥3 = 2.069 with satisfaction level 𝜆 = 0.7453.  

Case 2: Taking t = 0.5 and using LINGO software, the optimal solution of problem (12), is 

obtained as 𝑥1 = 0.910, 𝑥2 = 0, 𝑥3 = 2.234 with satisfaction level 𝜆 = 0.7145.  

Case 3: Taking t = 1 and using LINGO software, the optimal solution of problem (12), is 

obtained as 𝑥1 = 0.831, 𝑥2 = 0, 𝑥3 = 2.431 with satisfaction level 𝜆 = 0.6882.  

Case 4: Taking t = 1.5 and using LINGO software, the optimal solution of problem (12), is 

obtained as 𝑥1 = 0.721, 𝑥2 = 0, 𝑥3 = 2.598 with satisfaction level 𝜆 = 0.5358. 

Case 5: Taking t = 2 and using LINGO software, the optimal solution of problem (12), is 

obtained as 𝑥1 = 0.674, 𝑥2 = 0, 𝑥3 = 2.651 with satisfaction level 𝜆 = 0.4775.  

For different values of t, the comparative study of the obtained fuzzy optimal solutions is given 

in Tables 2 to 6. For t = 2 we obtained a better solution for the leader objective, whereas for t 

= 0.25, we find better solution for follower objective.  

Table 2: Fuzzy optimal solution for t = 0.25. 

X = (1.081, 0, 2.069) 
𝐹̃1(x) = (0.586, 0.739, 1.416, 2.055, 3.162; 0.448, 0.717, 1.382, 

2.376, 4.03) 
𝐹1(x) = 1.584 

X = (1.081, 0, 2.069) 
𝐹̃2(x) = (0.684, 0.915, 1.258, 1.830, 2.780; 0.508, 0.719, 1.276, 

2.140, 3.631) 
𝐹2(x) =1.268 

Table 3: Fuzzy optimal solution for t = 0.5. 

X = (0.910, 0, 2.234) 
𝐹̃1(x) = (0.591, 0.857, 1.334, 2.045, 3.149; 0.457, 0.723, 1.404, 

2.356, 4.009) 
𝐹1(x) = 1.577 

X = (0.910, 0, 2.234) 
𝐹̃2(x) = (0.690, 0.923, 1.265, 1.827, 2.783; 0.516, 0.724, 1.288, 

2.159, 3.653)    
𝐹2(x) = 1.476     

Table 4: Fuzzy optimal solution for t = 1. 

X = (0.831, 0, 2.431) 
𝐹̃1(x) = (0.613, 0.884, 1.360, 2.108, 3.290; 0.475, 0.736, 1.438, 

2.384, 4.017) 
𝐹1(x) = 1.612 

X = (0.831, 0, 2.431) 
𝐹̃2(x) = (0.700, 0.934, 1.274, 1.823, 2.786; 0.528, 0.731, 1.305, 

2.187, 3.687)   
𝐹2(x) = 1.488    

Table 5: Fuzzy optimal solution for t = 1.5. 

X = (0.721,0, 2.598) 
𝐹̃1(x) = (0.660, 0.306, 1.351, 2.151, 3.412; 0.483, 0.745, 1.465, 

2.405, 4.022)   
𝐹1(x) = 1.632    

X = (0.721, 0, 2.598) 
𝐹̃2(x) = (0.706, 0.941, 1.280, 1.820, 2.789; 0.534, 0.737, 1.317, 

2.207, 3.712)   
𝐹2(x) = 1.498     

Table 6: Fuzzy optimal solution for t = 2. 

X = (0.674, 0, 2.651) 
𝐹̃1(x) = (0.657, 0.924, 1.329, 2.878, 3.439; 0.004, 0.811, 1.475, 

2.413, 4.024)    
𝐹1(x) = 1.771 

X = (0.674, 0, 2.651) 
𝐹̃2(x) = (0.716, 0.943, 1.281, 1.811, 2.798; 0.546, 0.731, 1.342, 

2.295, 3.822) 
𝐹2(x) = 1.591 
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7. CONCLUSION  

This paper presents a novel approach to addressing the intuitionistic fuzzy bilevel linear 

fractional programming problem (IFBLFPP). The proposed method involves transforming the 

IFBLFPP into an intuitionistic fuzzy bilevel linear programming problem (IFBLPP), which is 

subsequently converted into a crisp bilevel linear programming problem (CBLPP) using a 

rigorously defined accuracy function. To further simplify the problem, Zimmermann's 

technique is employed in conjunction with appropriate nonlinear membership functions, 

reducing the CBLPP to a single-objective linear programming problem (CBLFPP), which can 

be efficiently solved using a suitable linear programming algorithm. 

To demonstrate the effectiveness of the proposed methodology, a numerical example featuring 

two objective functions involving pentagonal intuitionistic fuzzy numbers (PIFNs) is provided. 

Additionally, a comparative analysis is conducted, examining various nonlinear membership 

functions and different values of time parameter ttt. This analysis offers valuable insights into 

the approach's performance. 

In the future, this methodology could potentially be extended to address more complex 

problems, such as the intuitionistic fuzzy bilevel nonlinear fractional programming problem. 
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