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Abstract  

The differential evolution algorithm is an effective method for global numerical optimization that is 

straightforward to understand, easy to implement, reliable, and efficient. As one of the evolutionary algorithms, 

Differential Evolution addresses global optimization problems by iteratively refining candidate solutions through 

an evolutionary process. It serves as a heuristic technique for minimizing potentially nonlinear and non-

differentiable continuous functions. Global minimization algorithms require efficient computational time, which 

motivates the use of parallel computational approaches. This new technique utilizes multiple independent parallel 

computing units that occasionally share the best solutions they have discovered. This study proposes an improved 

approach designed to minimize the number of function calls, thereby strengthening the method's efficiency in 

exploring the objective function's search space. The proposed parallelizing Differential Evolution algorithm has 

been tested on several of optimization problems, and it appears from the experimental results that the executing 

time of the proposed parallelizing Differential Evolution becomes faster compared with Classic Differential 

Evolution and the other previous modifications of Differential Evolution. Also, results indicate significant 

improvements in function evaluations and solution quality compared to existing methodologies, demonstrating 

the effectiveness of the proposed approach. 
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1. INTRODUCTION 

The assignment o f  locating the global minimum of a continuous and differentiable 

function  

  f: S → R, S ⊂ Rn is expressed as: 

   𝑥∗  = arg min
𝑥𝜖𝑆

𝑓(𝑥)                                                     (1) 

 Where the set S is defined as: 

S = [a1, b1] ⊗ [a2, b2] ⊗ . . . [an, bn] 

The real-world problems can be modelled as global optimization problems, such as 

problems from physics [1–3], chemistry [4–6], economics [7, 8], medicine [9, 10], etc. 

Recently, different algorithms have been proposed to tackle the problem of Equation (1), 

such as simulated annealing methods [11–13], differential evolution (DE) methods [14], 

particle swarm optimization methods [15], ant colony optimization [16], genetic 

algorithms [17, 18], etc. The DE algorithm firstly generates a population of candidate 

solutions, which iteratively evolves through the crossover stage in order to determine the 
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global minimum of the objective function. The method has been applied across various 

research fields, including electromagnetics [19], energy consumption problems [20], job 

shop scheduling [21], and image segmentation [22]. Differential Evolution has evolved 

into a reliable and versatile optimization tool that is used easily. The initial publication on 

DE appeared as a technical report in 1995 (Storn and Price 1995). Since then, DE has 

demonstrated its effectiveness in competitions, such as the IEEE’s International Contest 

on Evolutionary Optimization (ICEO) in 1996 and 1997, and in a wide range of real-world 

applications. DE's performance can be enhanced, and its methodology adapted to various 

optimization scenarios. It operates on a population of candidate solutions, referred to as 

individuals, and iteratively refines them toward the optimal solution. This algorithm makes 

minimal assumptions about the optimization problems, allowing for rapid exploration of large 

design spaces [23]. DE is considered one of the most versatile and robust population-based 

search algorithms, effectively handling multi-modal problems [24].  

In this paper, a modified parallel DE presents an approach that requires fewer total evaluations 

to reach the optimum value, achieving convergence with minimal external iterations of the 

algorithm while successfully identifying the global minimum in several cases. The paper is 

structured as follows: the second section provides a literature review of DE and the proposed 

parallel DE, highlighting challenges related to parallelization and current strategies to address 

them. The third section describes the experimental test functions, while the fourth section 

discusses numerical experiments that optimize the parameters of the proposed parallel DE, 

along with the associated experimental results. Finally, the fifth section concludes the paper 

and offers suggestions for future research directions. 

 

2. METHOD DESCRIPTION 

This section provides a comprehensive overview of the base Differential Evolution algorithm, 

followed by an explanation of the proposed parallel Differential Evolution approach. Starts by 

generating a population of candidate solutions, followed by a stochastic search process through 

mutation which are iteratively refined through a crossover process to identify the global 

minimum of the objective function. The proposed method divides the processing into 

independent units, such as threads, allowing each to operate autonomously. Additionally, it 

outlines a communication framework for coordinating the various components in parallel 

processing and presents a termination technique specifically adapted for this parallel context. 

The Base Differential Evolution Algorithm 

Differential Evolution has demonstrated strong performance across a range of optimization 

problems in various scientific disciplines. As a stochastic population-based evolutionary 

method, DE operates using a population of candidate solutions and employs a stochastic search 

process through mutation, crossover, and selection operators, guiding the population toward 

improved solutions in the design space [24]. The foundational algorithm was first introduced 

by Storn [14] and has since undergone numerous modifications in various research studies. 

Examples include the compact differential evolution algorithm [25, 26], a self-adaptive DE 
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[27] that iteratively adjusts its parameters, and fuzzy logic modifications [28]. Additionally, a 

numerical study on various modifications of the DE method is presented by Kaelo et al. [29]. 

Description of the New Proposed Parallel DE 

Implementing a parallel DE algorithm can produce weighty benefits in terms of computational 

efficiency and speedup, taking advantage of the power of parallel processing by executing 

several DE iterations concurrently, getting faster convergence, and minimizing execution time. 

Parallel implementations have been well beneficial for computationally intensive problems, 

and large-scale optimization scenarios consume the time for objective function evaluation. 

There are three challenges to confirming the efficient execution of parallelizing DE. The first 

vital challenge is the balance between exploring the search space and exploiting the better 

solutions, the second challenge is load balancing, which includes distributing the 

computational load uniformly across processing units to maximize efficiency, and the third one 

is communication overhead and synchronization between parallel processes. To overcome 

these challenges, it can be useful to use these approaches. first one, a master-slave architecture 

where a master process manages the overall execution and distributes subtasks to slave 

processes, second one, dividing the population into subgroups and processing them 

independently in parallel that can be combined with migration strategies, where individuals are 

exchanged between subgroups periodically to maintain diversity, third one, hybrid approaches 

that combine parallel DE with other optimization techniques [30]. 

Propagation Mechanism 

In the proposed Parallel Differential Evolution (PDE) method, the algorithm uses a (1-to-1) 

propagation mechanism. Generally, a random island will send its best value to another 

randomly selected island. i.e., the best values of the islands are spread to the rest by replacing 

their worst values, this technique is shown in Figure 1.  

 

Figure 1: (1-to-1) Propagation technique 
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The Termination Rule 

In the base Differential Evolution algorithm, termination occurs after reaching a predefined 

number of iterations, which can sometimes result in premature halting before the global 

minimum is identified. In contrast, the proposed PDE method employs a termination criterion 

that evaluates the convergence of each island separately. Specifically, the difference is 

calculated as follows: 

                         δi
(k)

= |fi,min
(k)

− fi,min
(k−1)

|,                                    (2) 

In this equation, fi,min
(k)

 represents the best function value found for island 𝑖 iteration k. If δi
(k)

≤

ϵ for a specified number of iterations, then the population evolution for the island is terminated. 

Furthermore, in the proposed PDE method, if this condition holds for more than one island, the 

entire algorithm will terminate. The proposed PDE algorithm is listed below with the proposed 

terminating mechanism and mechanism for communication between the islands. 

           The steps of the proposed PDE algorithm 

1.    INPUT: 

(a) The parameters 𝐍𝐏, 𝐂𝐑, 𝐅  

(b) The integer parameter𝐍, which stands for the number of islands. 

(c) The integer parameter𝑵𝐑, which represents the propagation rate. 

(d) The integer parameter 𝑵𝟏 , which represents the number of islands that should   

       Terminate in order to terminate the whole process. 

2.   OUTPUT: 

          (a) The agent 𝒙𝐛𝐞𝐬𝐭with the lower function value𝒇(𝒙𝐛𝐞𝐬𝐭). 

3.   Initialize all agents in𝐒. 

4.   Set iter = 1 

5.   For 𝒊 = 𝟏,… , 𝐍 do in Parallel, Perform for every island i as follows: 

i.        Set 𝒙 as the agent 𝒊. 
ii.       Pick randomly three agents , 𝒃, 𝒄 . 

iii.      Pick a random index 𝑹 ∈ {𝟏, … , 𝒏}. 

iv.       Compute the trial vector 𝒚 =  [𝒚𝟏 ,𝒚𝟐 , … 𝒚𝐧] with the following procedure 

v.        For 𝒋 = 𝟏, … , 𝒏 do. 

           A. Set 𝒓𝐢 ∈ [0,1] a random number. 

           B. If 𝒓𝐣 < CR or 𝒋 = 𝑹 then 𝒚𝐣 = 𝒂𝐣 + 𝑭 × ( 𝒃𝐣 − 𝒄𝐣 ) else𝒚𝐣 = 𝒙𝐣. 

vi.       If 𝒚 ∈ 𝑺 AND 𝒇(𝒚)  ≤ 𝒇(𝒙) then  𝒙 =  𝒚. 

vii.      EndFor. 

6.  EndFor 

7.  If iter mod 𝑵𝐑 = 𝟎,  

     Apply the propagation scheme of Section (Propagation Mechanism) to the islands. 

8.  Set iter = iter + 1 

9.  If the termination rule of Section (The Termination Rule) is not valid, go to 5. 

10. Apply local search procedure to 𝒙𝐛𝐞𝐬𝐭 . The local search procedure used in the proposed   

     method is the BFGS variant of Powell [31]. 
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In the proposed method, the parallel island model depicted in Figure 2, the population of agents 

is divided into N independent segments known as islands. This approach is a well-established 

variant in parallel genetic algorithms [32, 33]. For example, if there are 10 agents distributed 

across 2 islands, agents 1–5 will be assigned to island 1, while agents 6–10 will belong to island 

2. Each island performs the differential evolution process independently. 
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Figure 2: flowchart of proposed Parallel Differential Evolution algorithm 
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3. TEST FUNCTIONS  

The benchmark functions used in the experiments have a fairly complex structure, and some 

of them have a large number of dimensions that make them perfect for studying, testing and 

comparing the results with the modified differential evolution method of Tsoulos, I.G. [34]. 

Benchmark functions  

To evaluate the effectiveness of the suggested parallel PDE method in locating the global 

minimum of functions, a set of test functions that are used here is selected [35, 36]. The selected 

functions are as follows: 

 BF1 function ( Bohachevsky1 ) is defined as follows: 

𝑓(𝑥) = 𝑥1
2 + 2𝑥2

2 −
3

10
cos(3𝜋𝑥1) −

4

10
 cos(4𝜋𝑥2) +

7

10
 

With  𝑥 ∈ [- 100, 100]2  

 BF2 function ( Bohachevsky1 ) is defined as follows: 

𝑓(𝑥) = 𝑥1
2 + 2𝑥2

2 −
3

10
cos(3𝜋𝑥1)  cos(4𝜋𝑥2) +

3

10
 

With  𝑥 ∈ [- 50, 50]2 

 BRANIN function is given by: 

𝑓(𝑥) = (𝑥2 −
5.1

4π2
𝑥1

2 +
5

π
𝑥1 − 6)2 + 10 (1 −

1

8π
) cos(𝑥1) + 10 

 

At range  −5 ≤ 𝑥1 ≤ 10 , 0 ≤ 𝑥2 ≤ 15. 

 CM (Cosine Mixture) function 

𝑓(𝑥) = 0.1 ∗ ∑cos(5𝜋𝑥𝑖)

𝑛

𝑖=1

− ∑𝑥𝑖
2

𝑛

𝑖=1

 

With  𝑥 ∈ [- 1, 1]n  

 Camel back function. Six Hump The function is given by: 

𝑓(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4 

At range  −5 ≤ 𝑥𝑖 ≤ 5. 

 Easom function is given by: 

𝑓(𝑥) = −𝑐𝑜𝑠(𝑥1) 𝑐𝑜𝑠(𝑥2) 𝑒(−((𝑥2−𝜋 )2+(𝑥1−𝜋)2)) 

With  𝑥 ∈ [- 100, 100]2  
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 EXPONENTIAL function. The function is given by the following: 

𝑓(𝑥) = − 𝑒𝑥𝑝 (−0.5∑ 𝑥𝑖
2 

𝑛

𝑖=1

), 

At range  −1 ≤ 𝑥𝑖 ≤ 1. 

In the experiments the function used with n = 4. And the corresponding function are denoted 

by EXP16. 

 Goldstein and Price function. The function is given by the equation: 

𝑓(𝑥) = [1 + (𝑥1+𝑥2 + 1)2 (19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2

2)] ∗ 

[30 + (2𝑥1−3𝑥2)
2 (18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)]. 

With  𝑥 ∈  [- 2, 2]2 

 GRIEWANK function. The function is given by the following: 

𝑓(𝑥) = 1 +
1

200
∑𝑥𝑖

2 − 

2

𝑖=1

∏
cos(𝑥𝑖)

√(𝑖)
,

2

𝑖=1

 

With  𝑥 ∈  [- 100, 100]2  

 Hansen function. The function is given by the following: 

𝑓(𝑥) = (∑ (𝑖 𝑐𝑜𝑠((𝑖 + 1)𝑥1 + 𝑖)
5

𝑖=1
) ∗  (∑ (𝑗  𝑐𝑜𝑠((𝑗 + 1)𝑥2 + 𝑗)

5

𝑗=1
) 

With  𝑥 ∈  [- 10, 10]2  

 HARTMAN3 function. The function is given by the following: 

𝑓(𝑥) = − ∑𝑐𝑖 

4

𝑖=1

𝑒𝑥𝑝(−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2 

3

𝑗=1

), 

Where a =𝑎𝑖𝑗=[

3 10 30
0.1   10  35
3 10 30

0.1 10 35

] , c =𝑐𝑖=[

1.0
1.2
3.0
3.2

] , P =𝑝𝑖𝑗= [

0.3689 0.1170 0.2673
0.4699   0.4387  0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

] 

With  𝑥 ∈  [0, 1]3  

 HARTMAN6 function. The function is given by the following: 

𝑓(𝑥) = − ∑𝑐𝑖 

4

𝑖=1

𝑒𝑥𝑝(−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2 

6

𝑗=1

), 
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Where a =𝑎𝑖𝑗=[

10 3 17 3.5 1.7 8
0.05   10  17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

] , c =𝑐𝑖=[

1.0
1.2
3.0
3.2

] , 

 P =𝑝𝑖𝑗= [

0.1312  0.1696 0.5569 0.0124 0.8283 0.5886
0.2329   0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8723 0.5743 0.1091 0.0381

] 

     With  𝑥 ∈  [0, 1]6  

 POTENTIAL function. As a test case, the molecular conformation corresponding to 

the global minimum of the energy of N atoms interacting via the Lennard–Jones 

potential [37] is utilized. The function to be minimized is defined as follows: 

𝑉𝐿𝐽(𝑟) = 4𝜖[( 
𝜎

𝑟
)12 − ( 

𝜎

𝑟
)6], 

In the current experiments, two different cases were studied: N = 3, 4. 

 SHEKEL5 function: 

𝑓(𝑥) = −∑
1

(𝑥 − 𝑎𝑖)  ( 𝑥 − 𝑎𝑖 )𝑇 + 𝑐𝑖

5

𝑖=1

 

Where a =

[
 
 
 
 
4 4 4 4
1   1  1 1
8 8 8 8
6 6 6 6
3 7 3 7]

 
 
 
 

 , c =

[
 
 
 
 
0.1
0.2
0.2
0.4
0.4]

 
 
 
 

, 

With  𝑥 ∈  [0, 10]4 

 SHEKEL7 function: 

𝑓(𝑥) = −∑
1

 (𝑥 − 𝑎𝑖) ( 𝑥 − 𝑎𝑖 )
𝑇 + 𝑐𝑖

7

𝑖=1

 

Where a =

[
 
 
 
 
 
 
4 4 4 4
1   1  1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3]

 
 
 
 
 
 

 , c=

[
 
 
 
 
 
 
0.1
0.2
0.2
0.4
0.4
0.6
0.3]

 
 
 
 
 
 

, 

With  𝑥 ∈  [0, 10]4 

file:///F:/Seybold/Dec%202024/An%20alternative%20Approach%20for%20Differential%20Evolution%20Algorithm%20(1).docx%23_bookmark87
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 SHEKEL10 function: 

𝑓(𝑥) = −∑
1

  (𝑥 − 𝑎𝑖) ( 𝑥 − 𝑎𝑖 )𝑇 + 𝑐𝑖

10

𝑖=1

 

 

Where a =

[
 
 
 
 
 
 
 
 
 
4 4 4 4
1   1  1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6]

 
 
 
 
 
 
 
 
 

 ,          c =

[
 
 
 
 
 
 
 
 
 
0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6]

 
 
 
 
 
 
 
 
 

, 

With 𝑥 ∈[0, 10]4 

 SINUSOIDAL function 

𝑓(𝑥) = −(2.5∏sin(𝑥𝑖 − z) +

𝑛

𝑖=1

∏sin(5(𝑥𝑖 − z))),        0  ≤ 𝑥𝑖 ≤ 𝜋

𝑛

𝑖=1

. 

The experiments use n = 16, and 𝑧 =
𝜋

6
 and the corresponding function denoted by the 

label SINU16. 

 RASTRIGIN function. The function is given by the following: 

𝑓(𝑥) =  𝑥1
2 + 𝑥2

2 − 𝑐𝑜𝑠(18𝑥1) −  𝑐𝑜𝑠(18𝑥2), 

With  𝑥 ∈  [-1, 1]2  

 ROSENBROCK function. The function is given by the following: 

𝑓(𝑥) = ∑(100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2

𝑛−1

𝑖=1

), 

At range −30 ≤ 𝑥𝑖 ≤ 30, in the experiments using function with n = 16. 

 Test2N function. This function is given by the equation: 

𝑓(𝑥) =
1

2
∑𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖

4

𝑖=1

, 𝑥𝑖 ∈ [−5,5]  

The function has 2𝑛 in the specified range and in the experiments n = 4, 5, 6.  
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 Test30N function. This function is given by: 

𝑓(𝑥) =
1

10
𝑠𝑖𝑛2(3𝜋𝑥1) ∗ ∑( (𝑥𝑖 − 1)2(1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1))) + (𝑥𝑛 − 1)2(1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛))

𝑛−1

𝑖=2

 

𝑥𝑖 ∈ [−10,10] , The function has 30𝑛 local minima in the search space and in the 

experiments n = 3, 4. 

 

4. EXPERIMENTAL RESULTS 

To compare various differential evolution methods for global optimization, certain 

parameters were kept constant. The parallel implementation of differential evolution was 

employed in these comparative experiments. The performance of the proposed PDE 

algorithm was assessed through a series of experiments utilizing 10 parallel units. The 

existing OpenMP library [38] facilitated the parallelization, and the entire technique was 

implemented using the C++ programming language. All experiments were conducted on a 

system equipped with an Intel (R) Core (TM) i7-8650U multi-core processor and 16 GB 

of RAM, using (the Windows 11 Pro) operating system, and the experimental settings used 

in the proposed PDE method are presented in Table 1. The effect of the proposed PDE is 

shown graphically in Figure 3, where the function calls for the functions SHEKEL5, 

SHEKEL7, and SHEKEL10 using the four schemes of differential weights are plotted. 

The population size for all consists of 10 particles. To ensure the reliability and validity of 

the research, experiments were conducted 30 times and concerned Tables 2. In Table 2, the 

columns display the average number of function calls for each problem, with the last row 

indicating the total number of function calls. The fraction in parentheses represents the 

proportion of runs in which the global optimum was found; if this number is absent, it 

signifies that the global minimum was identified in every independent run (100% success 

rate). The column labeled STATIC refers to a fixed differential weight value (F = 0.8), 

while the columns Ali and MDE present results from experiments of Ali, M. Montaz and 

Charilogis, V.; Tsoulos, I.G, respectively conducted in [36]. The column for the proposed 

PDE corresponds to the proposed Parallel Differential Evolution algorithm that utilizes a 

(1-to-1) propagation scheme with 10 threads. 

Table 1: The following settings were initially used to conduct the experiments 

Parameter Value Explanation 

NP 10 Number of populations (agents) 

propagation 1-to-1 scenario 

𝑁𝑅  5 iterations 

𝑁𝐼  2 islands 

M 30 Number of iterations 

𝜖 10−4 Small positive number 

The values of the global minimum for all tested benchmark functions resulting from 

experiments in Tables 2 and 3 are depicted in Figures 3 and 4, respectively. The plot of 

Figure 3 reveals the superiority of the proposed PDE method, but STATIC, Ali, and MDE 

https://quillbot.com/grammar-check#_bookmark12
https://quillbot.com/grammar-check#_bookmark9
https://quillbot.com/grammar-check#_bookmark13
https://quillbot.com/grammar-check#_bookmark22
https://quillbot.com/grammar-check#_bookmark19
https://quillbot.com/grammar-check#_bookmark19
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methods show a higher number of function calls in all problems. Note that the proposed 

PDE algorithm proves its proficiency by getting an identical global minimum at (1, 1) with 

a value of zero for the ROSENBROCK function compared with the modified MDE that 

gets the global minimum at (0, 0). 

Table 2: Statistical Comparison of Function Calls across Different Differential 

Evolution Optimization Methods and PDE Using a (1-to-1) Propagation Scheme with 10 

Threads 

NO PROBLEMS Static Ali MDE Proposed PDE 

1 BF1 (Bohachevsky) 996 1124 889 300 

2 BF2 (Bohachevsky) 926 1026 816 300 

3 BRANIN 878 900 730 300 

4 CM4 (Cosine Mixture) 1148(0.70) 1991 1103 610 

5 Camel back 1049 904(0.93) 846 610 

6 Easom 447 448 446 310 

7 EXP (16) 3578 7082 3521 300 

8 EXP (32) 7082 14125 7022 300 

9 GOLDSTEIN and PRICE 945 993 915 300 

10 GRIEWANK 947 921 826 300 

11 Hansen 2104 1949 1479 310 

Continued Table 2 Statistical Comparison of Function Calls Across Different 

Differential Evolution Optimization Methods and PDE Using a (1-to-1) Propagation 

Scheme with 10 Threads 

NO PROBLEMS Static Ali MDE Proposed PDE 

12 HARTMAN3 1017 1005 952 310 

13 HARTMAN6 4679(0.90) 3744(0.97) 3128(0.87) 610 

14 Potential 3 21473 2284 8197 300 

15 Potential 4 44191(0.43) 3098 (0.33) 24659(0.97) 300 

16 RASTRIGIN 841 994 777 300 

17 ROSENBROCK (16) 160349 160538(0.60) 38315 300 

18 SHEKEL5 4389(0.97) 4266 2839(0.83) 1500 

19 SHEKEL7 3905 3685 2668 2100 

20 SHEKEL10 4049 3548 2629 2400 

21 SINUSOIDAL (16) 6892 3628(0.97) 16905 3000 

22 Test function 2N4 2785 2275 2221 300 

23 Test function 2N5 4481 3170 3122 3000 

24 Test function 2N6 6852 4286 4296 3000 

25 Test function 30N3 1033 1098 951 610 

26 Test function 30N4 1355 1444 1285 610 

- TOTAL 288394 230529(0.8) 131539(0.67) 22580 

 

- 

TOTAL without 

ROSENBROCK (16) 
128045 69991(0.2) 93224(0.67) 22280 
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Figure 3: The effect of the usage of the proposed PDE algorithm versus different 

differential evolution optimization methods 

Table 3: The values of the global minimum for test functions by the proposed (PDE) 

algorithm are approximately the same accuracy as the modified differential evolution 

(MDE) 

NO PROBLEMS MDE Proposed PDE 

1 BF1(Bohachevsky) 0.0 0.0 

2 BF2(Bohachevsky) 0.0 0.0 

3 BRANIN 0.397887 0.397887 

4 CM4(Cosine Mixture) - Global max 0.4 

5 Camel - - 1.0316 

6 Easom - 1.0 - 1.0 

7 EXP (16) - 1.0 - 1.0 

8 EXP (32) - 1.0 - 1.0 

9 GOLDSTEIN 3.0 3.0 

10 GRIEWANK 0.0 0.0 

11 Hansen -176.54 -176.54 

12 HARTMAN3 -3.86 -3.86 

13 HARTMAN6 -3.322 -3.321 

14 Potential 3 0 0 

15 Potential 4 0 0 

16 RASTRIGIN - 2.0 - 2.0 

17 ROSENBROCK (16) 0.0 at (0,0) 0.0 at (1,1) better 

18 SHEKEL5 - 10.10 - 10.09 

19 SHEKEL7 - 10.34 - 10.34 

20 SHEKEL10 - 10.53 - 10.52 

21 SINUSOIDAL16 - 3.5 - 3.5 

22 Test function 2N4 -156.6646 -156.665 

23 Test function 2N5 -195.8308 -195.831 

24 Test function 2N6 -234.9969 -234.997 

25 Test function 30N3 0 0 

26 Test function 30N4 0 0 
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Figure 4: Comparison of total function calls of benchmark tested functions without 

ROSENBROCK function using different differential evolution optimization methods 

Table 4 provides further insights, presenting computational times, additionally; the 

comparisons reveal a reduction in execution time, as illustrated in Figure 5, alongside a 

decrease in the time needed to attain the global minimum values for the functions.  

Table 4: Time comparisons (seconds) when applying the proposed PDE and different 

differential evolution optimization methods to test functions 

NO PROBLEMS MTDE MDE Proposed PDE 

1 POTENTIAL 4 1.42 0.812 0.0966 

2 POTENTIAL 3 0.585 0.218 0.0654 

3 EXP (32) 0.425 0.412 0.320 

4 EXP (16) 0.131 0.135 0.039 

5 SINU (16) 0.338 0.768 0.187 

 

Figure 5: Comparison of executing time applying the proposed PDE and different 

differential evolution optimization methods to some of the test functions 
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5. CONCLUSION  

By harnessing parallel processing capabilities, experiments can drastically reduce 

computational time and enhance the efficiency of the optimization process. However, 

parallelizing differential evolution necessitates meticulous consideration of several factors, 

such as load balancing, exploration-exploitation trade-offs, and communication overhead. 

Parallel implementations of DE present a compelling approach for accelerating optimization 

tasks and addressing intricate problems. The proposed technique operates within parallel 

computing environments, employing the differential evolution algorithm to establish 

independent populations across parallel computing units. These units partition the initial 

population of agents, periodically exchanging the best objective function values via a (1-to-1) 

propagation technique, where randomly selected subpopulations share information. 

Furthermore, even a subset of the computing units can efficiently determine when to terminate 

the method. The experimental results confirmed that the proposed technique effectively 

identified the global minimum across various problems from the related literature. Generally, 

while the parallel processing units increased, the number of required function calls and the time 

needed for the optimization process decreased. This indicates that the proposed PDE algorithm 

is more efficient in exploring the search space of the test functions, leading to greater accuracy 

and reduced time in achieving the global minimum.  
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