

DOI: 10.5281/zenodo.14463762

151 | V 1 9 . I 1 2

AN ALTERNATIVE APPROACH FOR DIFFERENTIAL EVOLUTION

ALGORITHM

MOHAMED SAAD 1, HEGAZY ZAHER 2, NAGLAA RAGAA 3 and HEBA SAYED 4

1,3,4 Department of Operations Research and Management, Faculty of Graduate Studies for Statistical Research,

Cairo University, Giza, Egypt.
2 Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research, Cairo University,

Giza, Egypt.

Abstract

The differential evolution algorithm is an effective method for global numerical optimization that is

straightforward to understand, easy to implement, reliable, and efficient. As one of the evolutionary algorithms,

Differential Evolution addresses global optimization problems by iteratively refining candidate solutions through

an evolutionary process. It serves as a heuristic technique for minimizing potentially nonlinear and non-

differentiable continuous functions. Global minimization algorithms require efficient computational time, which

motivates the use of parallel computational approaches. This new technique utilizes multiple independent parallel

computing units that occasionally share the best solutions they have discovered. This study proposes an improved

approach designed to minimize the number of function calls, thereby strengthening the method's efficiency in

exploring the objective function's search space. The proposed parallelizing Differential Evolution algorithm has

been tested on several of optimization problems, and it appears from the experimental results that the executing

time of the proposed parallelizing Differential Evolution becomes faster compared with Classic Differential

Evolution and the other previous modifications of Differential Evolution. Also, results indicate significant

improvements in function evaluations and solution quality compared to existing methodologies, demonstrating

the effectiveness of the proposed approach.

Keywords: Global Optimization, Metaheuristics, Parallel Computing, Differential Evolution Algorithm.

1. INTRODUCTION

The assignment o f locating the global minimum of a continuous and differentiable

function

 f: S → R, S ⊂ Rn is expressed as:

 𝑥∗ = arg min
𝑥𝜖𝑆

𝑓(𝑥) (1)

 Where the set S is defined as:

S = [a1, b1] ⊗ [a2, b2] ⊗ . . . [an, bn]

The real-world problems can be modelled as global optimization problems, such as

problems from physics [1–3], chemistry [4–6], economics [7, 8], medicine [9, 10], etc.

Recently, different algorithms have been proposed to tackle the problem of Equation (1),

such as simulated annealing methods [11–13], differential evolution (DE) methods [14],

particle swarm optimization methods [15], ant colony optimization [16], genetic

algorithms [17, 18], etc. The DE algorithm firstly generates a population of candidate

solutions, which iteratively evolves through the crossover stage in order to determine the

DOI: 10.5281/zenodo.14463762

152 | V 1 9 . I 1 2

global minimum of the objective function. The method has been applied across various

research fields, including electromagnetics [19], energy consumption problems [20], job

shop scheduling [21], and image segmentation [22]. Differential Evolution has evolved

into a reliable and versatile optimization tool that is used easily. The initial publication on

DE appeared as a technical report in 1995 (Storn and Price 1995). Since then, DE has

demonstrated its effectiveness in competitions, such as the IEEE’s International Contest

on Evolutionary Optimization (ICEO) in 1996 and 1997, and in a wide range of real-world

applications. DE's performance can be enhanced, and its methodology adapted to various

optimization scenarios. It operates on a population of candidate solutions, referred to as

individuals, and iteratively refines them toward the optimal solution. This algorithm makes

minimal assumptions about the optimization problems, allowing for rapid exploration of large

design spaces [23]. DE is considered one of the most versatile and robust population-based

search algorithms, effectively handling multi-modal problems [24].

In this paper, a modified parallel DE presents an approach that requires fewer total evaluations

to reach the optimum value, achieving convergence with minimal external iterations of the

algorithm while successfully identifying the global minimum in several cases. The paper is

structured as follows: the second section provides a literature review of DE and the proposed

parallel DE, highlighting challenges related to parallelization and current strategies to address

them. The third section describes the experimental test functions, while the fourth section

discusses numerical experiments that optimize the parameters of the proposed parallel DE,

along with the associated experimental results. Finally, the fifth section concludes the paper

and offers suggestions for future research directions.

2. METHOD DESCRIPTION

This section provides a comprehensive overview of the base Differential Evolution algorithm,

followed by an explanation of the proposed parallel Differential Evolution approach. Starts by

generating a population of candidate solutions, followed by a stochastic search process through

mutation which are iteratively refined through a crossover process to identify the global

minimum of the objective function. The proposed method divides the processing into

independent units, such as threads, allowing each to operate autonomously. Additionally, it

outlines a communication framework for coordinating the various components in parallel

processing and presents a termination technique specifically adapted for this parallel context.

The Base Differential Evolution Algorithm

Differential Evolution has demonstrated strong performance across a range of optimization

problems in various scientific disciplines. As a stochastic population-based evolutionary

method, DE operates using a population of candidate solutions and employs a stochastic search

process through mutation, crossover, and selection operators, guiding the population toward

improved solutions in the design space [24]. The foundational algorithm was first introduced

by Storn [14] and has since undergone numerous modifications in various research studies.

Examples include the compact differential evolution algorithm [25, 26], a self-adaptive DE

DOI: 10.5281/zenodo.14463762

153 | V 1 9 . I 1 2

[27] that iteratively adjusts its parameters, and fuzzy logic modifications [28]. Additionally, a

numerical study on various modifications of the DE method is presented by Kaelo et al. [29].

Description of the New Proposed Parallel DE

Implementing a parallel DE algorithm can produce weighty benefits in terms of computational

efficiency and speedup, taking advantage of the power of parallel processing by executing

several DE iterations concurrently, getting faster convergence, and minimizing execution time.

Parallel implementations have been well beneficial for computationally intensive problems,

and large-scale optimization scenarios consume the time for objective function evaluation.

There are three challenges to confirming the efficient execution of parallelizing DE. The first

vital challenge is the balance between exploring the search space and exploiting the better

solutions, the second challenge is load balancing, which includes distributing the

computational load uniformly across processing units to maximize efficiency, and the third one

is communication overhead and synchronization between parallel processes. To overcome

these challenges, it can be useful to use these approaches. first one, a master-slave architecture

where a master process manages the overall execution and distributes subtasks to slave

processes, second one, dividing the population into subgroups and processing them

independently in parallel that can be combined with migration strategies, where individuals are

exchanged between subgroups periodically to maintain diversity, third one, hybrid approaches

that combine parallel DE with other optimization techniques [30].

Propagation Mechanism

In the proposed Parallel Differential Evolution (PDE) method, the algorithm uses a (1-to-1)

propagation mechanism. Generally, a random island will send its best value to another

randomly selected island. i.e., the best values of the islands are spread to the rest by replacing

their worst values, this technique is shown in Figure 1.

Figure 1: (1-to-1) Propagation technique

DOI: 10.5281/zenodo.14463762

154 | V 1 9 . I 1 2

The Termination Rule

In the base Differential Evolution algorithm, termination occurs after reaching a predefined

number of iterations, which can sometimes result in premature halting before the global

minimum is identified. In contrast, the proposed PDE method employs a termination criterion

that evaluates the convergence of each island separately. Specifically, the difference is

calculated as follows:

 δi
(k)

= |fi,min
(k)

− fi,min
(k−1)

|, (2)

In this equation, fi,min
(k)

 represents the best function value found for island 𝑖 iteration k. If δi
(k)

≤

ϵ for a specified number of iterations, then the population evolution for the island is terminated.

Furthermore, in the proposed PDE method, if this condition holds for more than one island, the

entire algorithm will terminate. The proposed PDE algorithm is listed below with the proposed

terminating mechanism and mechanism for communication between the islands.

 The steps of the proposed PDE algorithm

1. INPUT:

(a) The parameters 𝐍𝐏, 𝐂𝐑, 𝐅

(b) The integer parameter𝐍, which stands for the number of islands.

(c) The integer parameter𝑵𝐑, which represents the propagation rate.

(d) The integer parameter 𝑵𝟏 , which represents the number of islands that should

 Terminate in order to terminate the whole process.

2. OUTPUT:

 (a) The agent 𝒙𝐛𝐞𝐬𝐭with the lower function value𝒇(𝒙𝐛𝐞𝐬𝐭).

3. Initialize all agents in𝐒.

4. Set iter = 1

5. For 𝒊 = 𝟏,… , 𝐍 do in Parallel, Perform for every island i as follows:

i. Set 𝒙 as the agent 𝒊.
ii. Pick randomly three agents , 𝒃, 𝒄 .

iii. Pick a random index 𝑹 ∈ {𝟏, … , 𝒏}.

iv. Compute the trial vector 𝒚 = [𝒚𝟏 ,𝒚𝟐 , … 𝒚𝐧] with the following procedure

v. For 𝒋 = 𝟏, … , 𝒏 do.

 A. Set 𝒓𝐢 ∈ [0,1] a random number.

 B. If 𝒓𝐣 < CR or 𝒋 = 𝑹 then 𝒚𝐣 = 𝒂𝐣 + 𝑭 × (𝒃𝐣 − 𝒄𝐣) else𝒚𝐣 = 𝒙𝐣.

vi. If 𝒚 ∈ 𝑺 AND 𝒇(𝒚) ≤ 𝒇(𝒙) then 𝒙 = 𝒚.

vii. EndFor.

6. EndFor

7. If iter mod 𝑵𝐑 = 𝟎,

 Apply the propagation scheme of Section (Propagation Mechanism) to the islands.

8. Set iter = iter + 1

9. If the termination rule of Section (The Termination Rule) is not valid, go to 5.

10. Apply local search procedure to 𝒙𝐛𝐞𝐬𝐭 . The local search procedure used in the proposed

 method is the BFGS variant of Powell [31].

DOI: 10.5281/zenodo.14463762

155 | V 1 9 . I 1 2

In the proposed method, the parallel island model depicted in Figure 2, the population of agents

is divided into N independent segments known as islands. This approach is a well-established

variant in parallel genetic algorithms [32, 33]. For example, if there are 10 agents distributed

across 2 islands, agents 1–5 will be assigned to island 1, while agents 6–10 will belong to island

2. Each island performs the differential evolution process independently.

Start

Initialization of islands,

Mutation, crossover rate,

Selection stage and other parameters.

Mapping subpopulations to

 Ni processor units.

Evaluate fitness values

Iteration

Or

Termination rule

Best solution

For all PUs

False Ni PU

Single DE of PU 1 Single DE of PU 2
Single DE of PU N

Crossover

Selection

Mutation

Crossover

Selection

Mutation

Crossover

Selection

Mutation

True

P
r
o

p
a

g
a

ti
o

n
 N

i
 i

sl
a

n
d

s

P
r
o

p
a

g
a

ti
o

n
 N

i
 i

sl
a

n
d

s

Figure 2: flowchart of proposed Parallel Differential Evolution algorithm

DOI: 10.5281/zenodo.14463762

156 | V 1 9 . I 1 2

3. TEST FUNCTIONS

The benchmark functions used in the experiments have a fairly complex structure, and some

of them have a large number of dimensions that make them perfect for studying, testing and

comparing the results with the modified differential evolution method of Tsoulos, I.G. [34].

Benchmark functions

To evaluate the effectiveness of the suggested parallel PDE method in locating the global

minimum of functions, a set of test functions that are used here is selected [35, 36]. The selected

functions are as follows:

 BF1 function (Bohachevsky1) is defined as follows:

𝑓(𝑥) = 𝑥1
2 + 2𝑥2

2 −
3

10
cos(3𝜋𝑥1) −

4

10
 cos(4𝜋𝑥2) +

7

10

With 𝑥 ∈ [- 100, 100]2

 BF2 function (Bohachevsky1) is defined as follows:

𝑓(𝑥) = 𝑥1
2 + 2𝑥2

2 −
3

10
cos(3𝜋𝑥1) cos(4𝜋𝑥2) +

3

10

With 𝑥 ∈ [- 50, 50]2

 BRANIN function is given by:

𝑓(𝑥) = (𝑥2 −
5.1

4π2
𝑥1

2 +
5

π
𝑥1 − 6)2 + 10 (1 −

1

8π
) cos(𝑥1) + 10

At range −5 ≤ 𝑥1 ≤ 10 , 0 ≤ 𝑥2 ≤ 15.

 CM (Cosine Mixture) function

𝑓(𝑥) = 0.1 ∗ ∑cos(5𝜋𝑥𝑖)

𝑛

𝑖=1

− ∑𝑥𝑖
2

𝑛

𝑖=1

With 𝑥 ∈ [- 1, 1]n

 Camel back function. Six Hump The function is given by:

𝑓(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4

At range −5 ≤ 𝑥𝑖 ≤ 5.

 Easom function is given by:

𝑓(𝑥) = −𝑐𝑜𝑠(𝑥1) 𝑐𝑜𝑠(𝑥2) 𝑒(−((𝑥2−𝜋)2+(𝑥1−𝜋)2))

With 𝑥 ∈ [- 100, 100]2

DOI: 10.5281/zenodo.14463762

157 | V 1 9 . I 1 2

 EXPONENTIAL function. The function is given by the following:

𝑓(𝑥) = − 𝑒𝑥𝑝 (−0.5∑ 𝑥𝑖
2

𝑛

𝑖=1

),

At range −1 ≤ 𝑥𝑖 ≤ 1.

In the experiments the function used with n = 4. And the corresponding function are denoted

by EXP16.

 Goldstein and Price function. The function is given by the equation:

𝑓(𝑥) = [1 + (𝑥1+𝑥2 + 1)2 (19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2

2)] ∗

[30 + (2𝑥1−3𝑥2)
2 (18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)].

With 𝑥 ∈ [- 2, 2]2

 GRIEWANK function. The function is given by the following:

𝑓(𝑥) = 1 +
1

200
∑𝑥𝑖

2 −

2

𝑖=1

∏
cos(𝑥𝑖)

√(𝑖)
,

2

𝑖=1

With 𝑥 ∈ [- 100, 100]2

 Hansen function. The function is given by the following:

𝑓(𝑥) = (∑ (𝑖 𝑐𝑜𝑠((𝑖 + 1)𝑥1 + 𝑖)
5

𝑖=1
) ∗ (∑ (𝑗 𝑐𝑜𝑠((𝑗 + 1)𝑥2 + 𝑗)

5

𝑗=1
)

With 𝑥 ∈ [- 10, 10]2

 HARTMAN3 function. The function is given by the following:

𝑓(𝑥) = − ∑𝑐𝑖

4

𝑖=1

𝑒𝑥𝑝(−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1

),

Where a =𝑎𝑖𝑗=[

3 10 30
0.1 10 35
3 10 30

0.1 10 35

] , c =𝑐𝑖=[

1.0
1.2
3.0
3.2

] , P =𝑝𝑖𝑗= [

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

]

With 𝑥 ∈ [0, 1]3

 HARTMAN6 function. The function is given by the following:

𝑓(𝑥) = − ∑𝑐𝑖

4

𝑖=1

𝑒𝑥𝑝(−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

6

𝑗=1

),

DOI: 10.5281/zenodo.14463762

158 | V 1 9 . I 1 2

Where a =𝑎𝑖𝑗=[

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

] , c =𝑐𝑖=[

1.0
1.2
3.0
3.2

] ,

 P =𝑝𝑖𝑗= [

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8723 0.5743 0.1091 0.0381

]

 With 𝑥 ∈ [0, 1]6

 POTENTIAL function. As a test case, the molecular conformation corresponding to

the global minimum of the energy of N atoms interacting via the Lennard–Jones

potential [37] is utilized. The function to be minimized is defined as follows:

𝑉𝐿𝐽(𝑟) = 4𝜖[(
𝜎

𝑟
)12 − (

𝜎

𝑟
)6],

In the current experiments, two different cases were studied: N = 3, 4.

 SHEKEL5 function:

𝑓(𝑥) = −∑
1

(𝑥 − 𝑎𝑖) (𝑥 − 𝑎𝑖)𝑇 + 𝑐𝑖

5

𝑖=1

Where a =

[

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7]

 , c =

[

0.1
0.2
0.2
0.4
0.4]

,

With 𝑥 ∈ [0, 10]4

 SHEKEL7 function:

𝑓(𝑥) = −∑
1

 (𝑥 − 𝑎𝑖) (𝑥 − 𝑎𝑖)
𝑇 + 𝑐𝑖

7

𝑖=1

Where a =

[

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3]

 , c=

[

0.1
0.2
0.2
0.4
0.4
0.6
0.3]

,

With 𝑥 ∈ [0, 10]4

file:///F:/Seybold/Dec%202024/An%20alternative%20Approach%20for%20Differential%20Evolution%20Algorithm%20(1).docx%23_bookmark87

DOI: 10.5281/zenodo.14463762

159 | V 1 9 . I 1 2

 SHEKEL10 function:

𝑓(𝑥) = −∑
1

 (𝑥 − 𝑎𝑖) (𝑥 − 𝑎𝑖)𝑇 + 𝑐𝑖

10

𝑖=1

Where a =

[

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6]

 , c =

[

0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6]

,

With 𝑥 ∈[0, 10]4

 SINUSOIDAL function

𝑓(𝑥) = −(2.5∏sin(𝑥𝑖 − z) +

𝑛

𝑖=1

∏sin(5(𝑥𝑖 − z))), 0 ≤ 𝑥𝑖 ≤ 𝜋

𝑛

𝑖=1

.

The experiments use n = 16, and 𝑧 =
𝜋

6
 and the corresponding function denoted by the

label SINU16.

 RASTRIGIN function. The function is given by the following:

𝑓(𝑥) = 𝑥1
2 + 𝑥2

2 − 𝑐𝑜𝑠(18𝑥1) − 𝑐𝑜𝑠(18𝑥2),

With 𝑥 ∈ [-1, 1]2

 ROSENBROCK function. The function is given by the following:

𝑓(𝑥) = ∑(100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2

𝑛−1

𝑖=1

),

At range −30 ≤ 𝑥𝑖 ≤ 30, in the experiments using function with n = 16.

 Test2N function. This function is given by the equation:

𝑓(𝑥) =
1

2
∑𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖

4

𝑖=1

, 𝑥𝑖 ∈ [−5,5]

The function has 2𝑛 in the specified range and in the experiments n = 4, 5, 6.

DOI: 10.5281/zenodo.14463762

160 | V 1 9 . I 1 2

 Test30N function. This function is given by:

𝑓(𝑥) =
1

10
𝑠𝑖𝑛2(3𝜋𝑥1) ∗ ∑((𝑥𝑖 − 1)2(1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1))) + (𝑥𝑛 − 1)2(1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛))

𝑛−1

𝑖=2

𝑥𝑖 ∈ [−10,10] , The function has 30𝑛 local minima in the search space and in the

experiments n = 3, 4.

4. EXPERIMENTAL RESULTS

To compare various differential evolution methods for global optimization, certain

parameters were kept constant. The parallel implementation of differential evolution was

employed in these comparative experiments. The performance of the proposed PDE

algorithm was assessed through a series of experiments utilizing 10 parallel units. The

existing OpenMP library [38] facilitated the parallelization, and the entire technique was

implemented using the C++ programming language. All experiments were conducted on a

system equipped with an Intel (R) Core (TM) i7-8650U multi-core processor and 16 GB

of RAM, using (the Windows 11 Pro) operating system, and the experimental settings used

in the proposed PDE method are presented in Table 1. The effect of the proposed PDE is

shown graphically in Figure 3, where the function calls for the functions SHEKEL5,

SHEKEL7, and SHEKEL10 using the four schemes of differential weights are plotted.

The population size for all consists of 10 particles. To ensure the reliability and validity of

the research, experiments were conducted 30 times and concerned Tables 2. In Table 2, the

columns display the average number of function calls for each problem, with the last row

indicating the total number of function calls. The fraction in parentheses represents the

proportion of runs in which the global optimum was found; if this number is absent, it

signifies that the global minimum was identified in every independent run (100% success

rate). The column labeled STATIC refers to a fixed differential weight value (F = 0.8),

while the columns Ali and MDE present results from experiments of Ali, M. Montaz and

Charilogis, V.; Tsoulos, I.G, respectively conducted in [36]. The column for the proposed

PDE corresponds to the proposed Parallel Differential Evolution algorithm that utilizes a

(1-to-1) propagation scheme with 10 threads.

Table 1: The following settings were initially used to conduct the experiments

Parameter Value Explanation

NP 10 Number of populations (agents)

propagation 1-to-1 scenario

𝑁𝑅 5 iterations

𝑁𝐼 2 islands

M 30 Number of iterations

𝜖 10−4 Small positive number

The values of the global minimum for all tested benchmark functions resulting from

experiments in Tables 2 and 3 are depicted in Figures 3 and 4, respectively. The plot of

Figure 3 reveals the superiority of the proposed PDE method, but STATIC, Ali, and MDE

https://quillbot.com/grammar-check#_bookmark12
https://quillbot.com/grammar-check#_bookmark9
https://quillbot.com/grammar-check#_bookmark13
https://quillbot.com/grammar-check#_bookmark22
https://quillbot.com/grammar-check#_bookmark19
https://quillbot.com/grammar-check#_bookmark19

DOI: 10.5281/zenodo.14463762

161 | V 1 9 . I 1 2

methods show a higher number of function calls in all problems. Note that the proposed

PDE algorithm proves its proficiency by getting an identical global minimum at (1, 1) with

a value of zero for the ROSENBROCK function compared with the modified MDE that

gets the global minimum at (0, 0).

Table 2: Statistical Comparison of Function Calls across Different Differential

Evolution Optimization Methods and PDE Using a (1-to-1) Propagation Scheme with 10

Threads

NO PROBLEMS Static Ali MDE Proposed PDE

1 BF1 (Bohachevsky) 996 1124 889 300

2 BF2 (Bohachevsky) 926 1026 816 300

3 BRANIN 878 900 730 300

4 CM4 (Cosine Mixture) 1148(0.70) 1991 1103 610

5 Camel back 1049 904(0.93) 846 610

6 Easom 447 448 446 310

7 EXP (16) 3578 7082 3521 300

8 EXP (32) 7082 14125 7022 300

9 GOLDSTEIN and PRICE 945 993 915 300

10 GRIEWANK 947 921 826 300

11 Hansen 2104 1949 1479 310

Continued Table 2 Statistical Comparison of Function Calls Across Different

Differential Evolution Optimization Methods and PDE Using a (1-to-1) Propagation

Scheme with 10 Threads

NO PROBLEMS Static Ali MDE Proposed PDE

12 HARTMAN3 1017 1005 952 310

13 HARTMAN6 4679(0.90) 3744(0.97) 3128(0.87) 610

14 Potential 3 21473 2284 8197 300

15 Potential 4 44191(0.43) 3098 (0.33) 24659(0.97) 300

16 RASTRIGIN 841 994 777 300

17 ROSENBROCK (16) 160349 160538(0.60) 38315 300

18 SHEKEL5 4389(0.97) 4266 2839(0.83) 1500

19 SHEKEL7 3905 3685 2668 2100

20 SHEKEL10 4049 3548 2629 2400

21 SINUSOIDAL (16) 6892 3628(0.97) 16905 3000

22 Test function 2N4 2785 2275 2221 300

23 Test function 2N5 4481 3170 3122 3000

24 Test function 2N6 6852 4286 4296 3000

25 Test function 30N3 1033 1098 951 610

26 Test function 30N4 1355 1444 1285 610

- TOTAL 288394 230529(0.8) 131539(0.67) 22580

-

TOTAL without

ROSENBROCK (16)
128045 69991(0.2) 93224(0.67) 22280

DOI: 10.5281/zenodo.14463762

162 | V 1 9 . I 1 2

Figure 3: The effect of the usage of the proposed PDE algorithm versus different

differential evolution optimization methods

Table 3: The values of the global minimum for test functions by the proposed (PDE)

algorithm are approximately the same accuracy as the modified differential evolution

(MDE)

NO PROBLEMS MDE Proposed PDE

1 BF1(Bohachevsky) 0.0 0.0

2 BF2(Bohachevsky) 0.0 0.0

3 BRANIN 0.397887 0.397887

4 CM4(Cosine Mixture) - Global max 0.4

5 Camel - - 1.0316

6 Easom - 1.0 - 1.0

7 EXP (16) - 1.0 - 1.0

8 EXP (32) - 1.0 - 1.0

9 GOLDSTEIN 3.0 3.0

10 GRIEWANK 0.0 0.0

11 Hansen -176.54 -176.54

12 HARTMAN3 -3.86 -3.86

13 HARTMAN6 -3.322 -3.321

14 Potential 3 0 0

15 Potential 4 0 0

16 RASTRIGIN - 2.0 - 2.0

17 ROSENBROCK (16) 0.0 at (0,0) 0.0 at (1,1) better

18 SHEKEL5 - 10.10 - 10.09

19 SHEKEL7 - 10.34 - 10.34

20 SHEKEL10 - 10.53 - 10.52

21 SINUSOIDAL16 - 3.5 - 3.5

22 Test function 2N4 -156.6646 -156.665

23 Test function 2N5 -195.8308 -195.831

24 Test function 2N6 -234.9969 -234.997

25 Test function 30N3 0 0

26 Test function 30N4 0 0

DOI: 10.5281/zenodo.14463762

163 | V 1 9 . I 1 2

Figure 4: Comparison of total function calls of benchmark tested functions without

ROSENBROCK function using different differential evolution optimization methods

Table 4 provides further insights, presenting computational times, additionally; the

comparisons reveal a reduction in execution time, as illustrated in Figure 5, alongside a

decrease in the time needed to attain the global minimum values for the functions.

Table 4: Time comparisons (seconds) when applying the proposed PDE and different

differential evolution optimization methods to test functions

NO PROBLEMS MTDE MDE Proposed PDE

1 POTENTIAL 4 1.42 0.812 0.0966

2 POTENTIAL 3 0.585 0.218 0.0654

3 EXP (32) 0.425 0.412 0.320

4 EXP (16) 0.131 0.135 0.039

5 SINU (16) 0.338 0.768 0.187

Figure 5: Comparison of executing time applying the proposed PDE and different

differential evolution optimization methods to some of the test functions

DOI: 10.5281/zenodo.14463762

164 | V 1 9 . I 1 2

5. CONCLUSION

By harnessing parallel processing capabilities, experiments can drastically reduce

computational time and enhance the efficiency of the optimization process. However,

parallelizing differential evolution necessitates meticulous consideration of several factors,

such as load balancing, exploration-exploitation trade-offs, and communication overhead.

Parallel implementations of DE present a compelling approach for accelerating optimization

tasks and addressing intricate problems. The proposed technique operates within parallel

computing environments, employing the differential evolution algorithm to establish

independent populations across parallel computing units. These units partition the initial

population of agents, periodically exchanging the best objective function values via a (1-to-1)

propagation technique, where randomly selected subpopulations share information.

Furthermore, even a subset of the computing units can efficiently determine when to terminate

the method. The experimental results confirmed that the proposed technique effectively

identified the global minimum across various problems from the related literature. Generally,

while the parallel processing units increased, the number of required function calls and the time

needed for the optimization process decreased. This indicates that the proposed PDE algorithm

is more efficient in exploring the search space of the test functions, leading to greater accuracy

and reduced time in achieving the global minimum.

References

1) Kudyshev, Z.A.; Kildishev, A.V.; Boltasseva, V.M.S.A. Machine learning–assisted global optimization of

photonic devices. Nanophotonics 2021, 10, 371–383. https://doi.org/10.1515/nanoph-2020-0376

2) Ding, X.L.; Li, Z.Y.; Meng, J.H.; Zhao, Y.X.; Sheng, G.H. Density-functional global optimization of

(LA2O3)n Clusters. J. Chem. Phys. 2012, 137, 214311. DOI:10.1063/1.4769282

3) Morita, S.; Naoki, N. Global optimization of tensor renormalization group using the corner transfer matrix.

Phys. Rev. B 2021, 103, 045131. https://doi.org/10.1103/PhysRevB.103.045131

4) Heiles, S.; Johnston, R.L. Global optimization of clusters using electronic structure methods. Int. J. Quantum

Chem. 2013, 113, 2091–2109. https://doi.org/10.1002/qua.24462

5) Yang, Y.; Pan, T.; Zhang, J. Global Optimization of Norris Derivative Filtering with Application for Near-

Infrared Analysis of Serum Urea Nitrogen. Am. J. Anal. Chem. 2019, 10, 143–152.

DOI: 10.4236/ajac.2019.105013

6) Grebner, C.; Becker, J.;Weber, D.; Engels, B. Tabu search based global optimization algorithms for problems

in computational Chemistry. J. Cheminf. 2012, 4, 10. DOI:10.1186/1758-2946-4-S1-P10

7) Dittner, M.; Müller, J.; Aktulga, H.M.; Hartke, B.J. Efficient global optimization of reactive force-field

parameters. Comput. Chem. 2015, 36, 1550–1561. DOI:10.1002/jcc.23966

8) Zhao, W.; Wang, L.; Zhang, Z. Supply-Demand-Based Optimization: A Novel Economics-Inspired

Algorithm for Global Optimization. IEEE Access 2019, 7, 73182–73206.

DOI:10.1109/ACCESS.2019.2918753

9) Mishra, S.K. Global Optimization of Some Difficult Benchmark Functions by Host-Parasite Co-

Evolutionary Algorithm. Econ. Bull. 2013, 33, 1–18. Available at https://ssrn.com/abstract=2343448

https://doi.org/10.1515/nanoph-2020-0376
http://dx.doi.org/10.1063/1.4769282
https://doi.org/10.1103/PhysRevB.103.045131
https://doi.org/10.1002/qua.24462
https://doi.org/10.4236/ajac.2019.105013
http://dx.doi.org/10.1186/1758-2946-4-S1-P10
http://dx.doi.org/10.1002/jcc.23966
http://dx.doi.org/10.1109/ACCESS.2019.2918753
https://ssrn.com/abstract=2343448

DOI: 10.5281/zenodo.14463762

165 | V 1 9 . I 1 2

10) Freisleben, B.; Merz, P. A genetic local search algorithm for solving symmetric and asymmetric traveling

salesman problems. In Proceedings of the IEEE International Conference on Evolutionary Computation,

Nagoya, Japan, 20–22 May 1996; pp. 616–621. DOI:10.1109/ICEC.1996.542671

11) Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–

680. DOI: 10.1126/science.220.4598.671

12) Van Laarhoven, P.J.M.; Aarts, E.H.L. Simulated Annealing: Theory and Applications; Riedel, D., Ed.;

Springer: Dordrecht, The Netherlands,1987. https://doi.org/10.1007/978-94-015-7744-1

13) Goffe, W.L.; Ferrier, G.D.; Rogers, J. Global Optimization of Statistical Functions with Simulated

Annealing. J. Econom. 1994, 60, 65–100. https://doi.org/10.1016/0304-4076(94)90038-8

14) Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the North

American Fuzzy Information Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523.

DOI: 10.1109/NAFIPS.1996.534789

15) Kennedy, J.; Everhart, R.C. Particle Swarm Optimization. In Proceedings of the 1995 IEEE International

Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; IEEE Press: Piscataway,

NJ, USA, 1995; Volume 4, pp. 1942–1948. http://dx.doi.org/10.1109/ICNN.1995.488968

16) Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39.

DOI: 10.1109/MCI.2006.329691

17) Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley

Publishing Company: Reading, MA, USA, 1989. ISBN:978-0-201-15767-3

18) Michaelewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin, Germany,

1996. ISBN: 3-540-58090-5

19) Rocca, P.; Oliveri, G.; Massa, A. Differential Evolution as Applied to Electromagnetics. IEEE Antennas

Propag. Mag. 2011, 53, 38–49. DOI: 10.1109/MAP.2011.5773566

20) Lee,W.S.; Chen, Y.T.; Kao, Y. Optimal chiller loading by differential evolution algorithm for reducing energy

consumption. Energy Build. 2011, 43, 599–604. DOI:10.1016/j.enbuild.2010.10.028

21) Yuan, Y.; Xu, H. Flexible job shop scheduling using hybrid differential evolution algorithms. Comput. Ind.

2013, 65, 246–260. DOI:10.1016/j.cie.2013.02.022

22) Xu, L.; Jia, H.; Lang, C.; Peng, X.; Sun, K. A Novel Method for Multilevel Color Image Segmentation Based

on Dragonfly Algorithm and Differential Evolution. IEEE Access 2019, 7, 19502–19538.

DOI: 10.1109/ACCESS.2019.2896673

23) Kenneth V.; Price Rainer M.; Storn. Differential Evolution: A Practical Approach to Global Optimization,

Department of Information Technology, Lappeenranta University of Technology, Lappeenranta, Finland,

Springer Berlin, Heidelberg.2005.

24) Georgioudakis, M., & Plevris, V.A comparative study of differential evolution variants in constrained

structural optimization. Frontiers in Built Environment: Computational Methods in Structural Engineering,

6:102, 2020. https://doi.org/10.3389/fbuil.2020.00102

25) F. Neri, E. Mininno, Memetic Compact Differential Evolution for Cartesian Robot Control. IEEE Comput.

Intell. 2010, 5, 54–65. DOI:10.1109/MCI.2010.936305

26) Mininno, E.; Neri, F.; Cupertino, F.; Naso, D. Compact Differential Evolution. IEEE Trans. Evol. 2011, 15,

32–54. https://doi.org/10.1109/TEVC.2010.2058120

http://dx.doi.org/10.1109/ICEC.1996.542671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/978-94-015-7744-1
https://doi.org/10.1016/0304-4076(94)90038-8
https://doi.org/10.1109/NAFIPS.1996.534789
http://dx.doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/MAP.2011.5773566
http://dx.doi.org/10.1016/j.enbuild.2010.10.028
http://dx.doi.org/10.1016/j.cie.2013.02.022
https://doi.org/10.1109/ACCESS.2019.2896673
https://doi.org/10.3389/fbuil.2020.00102
http://dx.doi.org/10.1109/MCI.2010.936305
https://doi.org/10.1109/TEVC.2010.2058120

DOI: 10.5281/zenodo.14463762

166 | V 1 9 . I 1 2

27) Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm with Strategy Adaptation for

Global Numerical Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417.

DOI:10.1109/TEVC.2008.927706

28) Hachicha, N.; Jarboui, B.; Siarry, P. A fuzzy logic control using a differential evolution algorithm aimed at

modelling the financial market dynamics. Inf. Sci. 2011, 181, 79–91. https://hal.science/hal-01679171

29) Kaelo, P.; Ali, M.M. A numerical study of some modified differential evolution algorithms. Eur. J. Oper.

2006, 169, 1176–1184. DOI:10.1016/j.ejor.2004.08.047

30) Sophia Mitchell. The Parallel Implementation of Differential Evolution Method. 2023. DOI:

10.4303/JEM/101387

31) Powell, M.J.D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math Program.

1989, 45, 547–566. https://doi.org/10.1007/BF01589118

32) Corcoran, A.L.; Wainwright, R.L. A parallel island model genetic algorithm for the multiprocessor

scheduling problem. In Proceedings of the 1994 ACM Symposium on Applied Computing, SAC ’94,

Phoenix, AZ, USA, 6–8 March 1994; pp. 483–487. https://doi.org/10.1145/326619.326817

33) Whitley, D.; Rana, S.; Heckendorn, R.B. Island model genetic algorithms and linearly separable problems.

In Evolutionary Computing; Series Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,

Germany, 1997; Volume 1305, pp. 109–125. https://doi.org/10.1007/BFb0027170

34) Charilogis, V.; Tsoulos, I.G.; Tzallas, A.; Karvounis, E. Modifications for the Differential Evolution

Algorithm. Symmetry 2022,14. https://doi.org/10.3390/sym14030447

35) Ali, M.M. Charoenchai Khompatraporn, Zelda B. Zabinsky, A Numerical Evaluation of Several Stochastic

Algorithms on Selected Continuous Global Optimization Test Problems. J. Glob. Opt. 2005, 31, 635–672.

https://doi.org/10.1007/s10898-004-9972-2

36) Floudas, C.A.; Pardalos, P.M.; Adjiman, C.; Esposoto, W.; G¨um¨us, Z.; Harding, S.; Klepeis, J.; Meyer, C.;

Schweiger, C. Handbook of Test Problems in Local and Global Optimization; Kluwer Academic Publishers:

Dordrecht, The Netherlands, 1999. https://doi.org/10.1007/978-1-4757-3040-1

37) Lennard-Jones, J.E. On the Determination of Molecular Fields. Proc. R. Soc. Lond. A 1924, 106, 463–477.

https://doi.org/10.1098/rspa.1924.0082

38) Chandra, R.; Dagum, L.; Kohr, D.; Maydan, D.; McDonald, J.; Menon, R. Parallel Programming in OpenMP;

Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2001. ISBN 1-55860-671-8.

http://dx.doi.org/10.1109/TEVC.2008.927706
https://hal.science/hal-01679171
http://dx.doi.org/10.1016/j.ejor.2004.08.047
https://doi.org/10.1007/BF01589118
https://doi.org/10.1145/326619.326817
https://doi.org/10.1007/BFb0027170
https://doi.org/10.3390/sym14030447
https://doi.org/10.1007/s10898-004-9972-2
https://doi.org/10.1007/978-1-4757-3040-1
https://doi.org/10.1098/rspa.1924.0082

