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Abstract 

The paper discusses the methodology for constructing a self-synchronizing stream cipher based on the rules of 

elementary cellular automata. The objective of the research is to increase the reliability of stream message 

encryption, which is achieved by implementing a varying initial number of bits that form the key gamma. To solve 

this problem, elementary cellular automata of a given dimension were used, in which the initial settings were 

specified by the bits of the first N bits of the message. Based on the generated evolutions of elementary cellular 

automata, a key gamma was formed, which, using the XOR operation, generated a ciphergram in real time. To 

select the most suitable transition rule for cellular automata, experiments were carried out in which various rules 

were analyzed. As a result of the analysis of the results obtained, the most suitable transition rules for cellular 

automata, as well as their combinations, were selected. For more reliable stream encryption, it is proposed to 

periodically change the dimension of the cellular automaton, as well as the rule of its transitions. The proposed 

stream cipher can be easily implemented in both software and hardware. 

Keywords: Self-Synchronous Stream Cipher, Elementary Cellular Automaton, Evolution, Wolfram's Rule. 

 

INTRODUCTION 

In modern conditions of human activity, high-quality communication is very important. The 

existence of modern information transmission systems and the Internet has entailed the creation 

of a parallel information environment, which is a communication web that has entangled the 

entire globe. In this communication environment, large amounts of data are constantly 

transmitted, which must not be subject to distortion. Also, the data often should not be 

accessible to many users of the data network. Therefore, many methods and means of security 

it have been developed and implemented [1 - 4]. 

Data in the transmission network can be protected by different methods [1 - 4]. Such security 

methods can be divided into: methods that secure against physical unauthorized access to 

means of information transmission [5] and methods that secure information that is transmitted 

in the public domain [6]. Methods of secureting information of the first group include modern 

fiber-optic data transmission systems [5], the use of various specialized devices and other 

physical methods that block access to the communication system. The second group of methods 

includes information security methods based on cryptography and steganography [7, 8]. 

Much attention is paid to methods of secureting transmitted information during its transmission 

in real time. In this case, it is better to use open access transmission networks, since closed 

access networks are much more expensive, and they also have their own specifics in the 

implementation of physical communications. Easier to use existing open communication tools. 
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However, the use of such networks requires reliable methods of encryption and transmission 

of information without delays and a significant increase in volumes. 

Among the ciphers that are generated in real time, stream ciphers, which are based on bit 

encryption, stand out [10, 11]. For such ciphers, an important element is the generator that 

generates the key gamma. Typically, such a generator is a pseudo-random bit sequence 

generator (PRBSG) [10]. The key in such ciphers is the structure of the PRBSG and its initial 

settings [10]. In addition, the length of the repetition period of the pseudo-random bit sequence 

at the PRBSG output plays an important role. Ideally, this length should exceed the length of 

the secret message. There are two types of stream ciphers: synchronous [12, 13] and 

asynchronous [12 - 15] stream ciphers. Synchronous stream ciphers require tight 

synchronization on the sending and receiving sides. This circumstance often limits the use of 

synchronous stream ciphers and does not benefit their development. This limitation is 

especially true for users located over large distances. Asynchronous stream ciphers attract 

particular attention. The only limitations of such ciphers is the mandatory use of a certain 

number of the first bits of the message to set the initial settings of the PRBSG or its 

configuration. The paper discusses a method for generating an asynchronous (self-

synchronous) stream cipher based on cellular automata. 

Problem statement 

For real-time message encryption, one of the main tasks is to represent the input bit sequence 

without containing statistical connections with the original message. The most effective is the 

use of stream encryption methods, which are based on representing the initial message as a 

sequence of bits and mixing these bits with bits generated by a key gamma generator. All 

existing methods are implemented based on shift registers, chaotic ciphers, and also use cellular 

automata for image encryption. Most of these methods require a large amount of computation 

and are used to encrypt objects represented by large amounts of data (for example, images). 

For encrypting rapidly changing information in real time, known methods do not always 

provide a high-quality stream cipher. Therefore, the task of generating a stream cipher in real 

time is still relevant. 

The work solves the problem of developing a method for stream encryption of images with a 

variable number of first bits, which carry out initial settings based on cellular automata (CA) 

technologies. The problem posed is solved by generating evolutions of elementary cellular 

automata with different dimensions, the cell states of which are sources for the formation of 

encryption key bits. 

Relative works 

Stream ciphers are divided into synchronous and asynchronous. Both are symmetric ciphers. 

Asynchronous stream ciphers require a certain number of the first bits of the message to form 

and set the PRBSG. A large number of stream ciphers are based on linear feedback shift 

registers (LSFSR) [10, 16]. For such self-synchronizing stream ciphers, the number of bits in 

the shift register determines the number of initial setup bits. One of the disadvantages of such 

ciphers is the limited length of the repetition period of the pseudo-random bit sequence, which 
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is determined by the length of the shift register. Also, often the output sequence in such 

PRBSGs is easily predictable. The initial filling of the LSFSR can be determined by solving a 

system of linear equations. To destroy linear complexity, a nonlinear combination of several 

LSFSRs is used [17]. For example, a Geff generator can be used [18, 19]. However, this 

generator is also not resistant to correlation attacks. 

Currently, chaotic self-synchronizing stream ciphers are widely used [20, 21]. These ciphers 

are built on the basis of chaotic cards. These self-synchronous chaotic stream ciphers use a 

large number of computational operations and are most suitable for encrypting information that 

does not change rapidly (for example, images). However, for real-time encryption, encryption 

failures may occur. 

There is also a self-synchronizing stream cipher called MOUSTIQUE [22]. This cipher is 

software-specific and has limitations in key size, input memory, and special encryption 

function, which limit its use. 

Much research is devoted to the development of stream ciphers implemented on the basis of 

cellular automata [10, 23, 24]. These stream ciphers are mainly used to encrypt bit sequences 

in real time. Work [24] considers the use of elementary cellular automata for image encryption. 

Various combinations of rules are presented for a fixed dimension of the cellular automaton. 

This situation requires a combination of five evolution rules to obtain high quality encryption, 

which complicates the encryption process. The dimension of an elementary cellular automaton 

is determined by the dimension of the image and remains unchanged throughout the entire 

encryption process. The number of evolutionary steps is also determined by the dimension of 

the cellular automaton. Which requires using a combination of multiple rules for each bit layer 

of the image. 

In terms of creating self-synchronizing stream ciphers with varying initial states of key gamma 

generators, elementary cellular automata were not used. In this direction, the presented work is 

relevant and has scientific novelty. 

Asynchronous stream cipher with variable key length based on cellular automata 

Both synchronous and asynchronous stream ciphers mostly require a pseudo-random bit 

sequence generator, which generates a key gamma to generate a stream ciphergram. If in 

synchronous stream ciphers the PRBSG begins to work from the first bit of the input message, 

then in asynchronous stream ciphers the key bit sequence begins to form after the formation of 

a certain number of the first bits of the input message. As a rule, these first bits carry out the 

initial settings of the already built-in PRBSG, the configuration of which is already set on the 

transmitting and receiving sides. This paper proposes an asynchronous stream cipher, which is 

implemented by encryption and decryption tools with a built-in key gamma generator 

implemented on an elementary cellular automaton (ECA). Such generators are considered in 

[25, 26]. Generators are implemented based on ECA evolutions according to the rules chosen 

for this. In classical ECA, evolution can be viewed based on 256 rules (from 0 to 255), which 

are described in detail in the works of Stephen Wolfram [25, 26]. Each next step of evolution 

is considered based on the states of the cells of the previous step of evolution. In this case, the 
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state of one cell of each evolution step is formed based on the analysis of the states of three 

cells of the previous evolution step. The cell's own state and the states of two neighboring cells 

are analyzed. For convenience, ECAs are presented in expanded form. The outermost cells in 

each row are adjacent. Examples of ECA evolutions for rules: 30, 45, 51, 77, 90, 105, 107, 111, 

150, 165, 184, 214 in Fig. 1 are shown. 

 

Fig 1: Examples of ECA evolutions for rules: 30, 45, 51, 77, 90, 105, 107, 111, 150, 165, 

184, 214. 700 evolutionary steps are used 

Using visual analysis, can select the appropriate ECA transition rule, which allows you to 

obtain a high-quality ciphergram that is resistant to various types of attacks. A visual analysis 

of the presented ECA evolutions shows that the most suitable rules are: 30, 45, 90, 105, 150 

and 165. When implementing rule 30, initial settings with a large number of cells with logical 

“0” states were used. This significantly affected the first steps of evolution, which do not 

provide high quality encryption. Therefore, it is better to continue encryption through several 

evolution steps. The first specified bits of the message, starting from the (N+1) th bit, are 

encrypted with the bits obtained at the zero evolution step (N is the number of initial setup 

bits). During the arrival time of N bits, N evolution steps are formed. In this case, N can be a 

sufficiently large number and then a smaller number of evolutionary steps can be used. For 

example, after K evolutionary steps (K≤N), as shown in Fig. 2. 



  
  
 
 

DOI: 10.5281/zenodo.14598679 

5 | V 2 0 . I 0 1  

 

Fig 2: An example of forming an evolution in N steps, where N is the number of first bits 

of the message 

In fact, during the formation of the first N bits of the message, N evolutionary steps of the ECA 

are formed according to the selected transition rule. Therefore, N+1 bits of the message and 

subsequent bits of the message can already be encrypted with bits generated at the Kth 

evolutionary step. In this case, it is difficult for the enemy to determine the algorithm and 

structure of the key gamma generator. Also, to increase the reliability of encryption, it is 

necessary to use a certain number of bits from each evolutionary step. For example, the key 

gamma can be formed by the first 10 bits obtained at the Kth evolutionary step, bits from 11 to 

20 obtained at the (K+1) th evolutionary step, etc. 

For clarity, let’s imagine a message consisting of 250,000 bits in the form of a two-dimensional 

binary array of size 500×500 (Fig. 3). Where black represents logical “1s” and white represents 

logical “0s”. The first bits of the message start at the left edge of the top row of the array, the 

500th bit is the last right bit in the first row of the array, and the 501st bit of the message is the 

first left bit of the second row of the array, etc. 

 

Fig 3: An example of an input message represented as a binary array of size 500×500 
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For the convenience of encryption, the first 500 bits of the message are used, which form the 

initial states of the ECA cells. Bits are encrypted using the XOR operation. Examples of 

encryption of this binary array in Fig. 4 are presented. The number of evolutionary steps 

corresponds to 500, which is sufficient to encrypt this array with an ECA dimension of 500 

cells. 

 

Fig 4: Examples of encryption of a binary array shown in Fig. 3 using ECA rules: 30, 

45, 51, 77, 90, 105, 107, 111, 150, 165, 184, 214 and 237 

Analysis of Figure 4 showed that rules 51, 77, 107, 111, 184, 214 and 237 do not provide high 

quality encryption, which indicates the impossibility of using these rules. Their use is possible 

in combination with other rules. If we use the same rules for the same array with fewer initial 

setup bits, we will get a completely different encryption picture. For example, if N=100 bits, 
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Fig 5:  An example of encryption of a binary array shown in Fig. 3 at N=100 

In Figure 5 are shows the results for ECA rules: 30, 45, 51, 77, 90, 105, 107, 111, 150, 165, 

184, 214 and 237.The following rules turned out to be unreliable for encryption: 51, 77, 107, 

184, 214 and 237. Rule 111 requires additional research using special tests. However, if there 

are doubts during visual analysis, then it is better not to use this rule. 

This example shows different pictures of bit array encryption when using different ECA 

dimensions. In this case, it is necessary to vary the evolution by changing the ECA dimension 

at various subsequent evolutionary steps. This variation of dimensions at different stages of 

evolution allows us to obtain a stream cipher with high resistance to various types of attacks. 

For example, at the initial steps of evolution N setup bits were used, and at K+1 step N-Q bits 

can be used. After the (K+1) – th step of evolution, the structure of the stream cipher changes 

abruptly. Even if Q=1, the stream cipher differs significantly from the cipher obtained in the 

previous steps of the ECA evolution. A combination of rules that provide high quality 

encryption allows to increase the repetition period of the bit sequence, which makes the cipher 

more resistant to attacks. At the same time, it is better to apply different rules at different steps 

of the evolution of one first rule, which does not allow an adversary to break the entire cipher 
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if he somehow became aware of the initial part of the stream cipher, which is the least secure. 

The use of a combination of untrusted rules in an XOR operation with an input bitmap was also 

explored. The results of such a study in Fig. 6 are presented. 

 

Fig 6: Examples of encryption of a binary array shown in Fig. 3, using combinations of 

ECA rules: (51, 237), (77, 214) and (107, 184) 

The results presented in Fig. 7 does not visually allow to determine the input binary array. Such 

results require additional research based on special tests. Research is needed to find the best 

combinations of ECA rules. If you use more combinations of rules, i.e. complicate the overall 

evolution based on the XOR operation, then you can get good encryption results. At the same 

time, complicating evolution using rules that does not give high quality generally does not give 

the desired result. Some combinations of evolutions of such rules in Fig. 7 are presented. 

 

Fig 7: Examples of encrypting a binary array using complicated evolutions using a 

combination of ECA rules 
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In Fig. 7 shows combinations of ECA rules that do not provide high quality encryption. This is 

easily determined using visual analysis. However, in Figure 7 provides an example that shows 

a combination of rules 15, 45 and 101. Here, rules 15 and 101, both individually and together, 

do not show high quality encryption. Adding rule 45 even visually allows to verify the high 

quality of encryption. This indicates that having one desired rule (in this example, rule 45) 

leads to good encryption results. For a more detailed analysis of the proposed stream cipher, 

the method of constructing a number distribution diagram was used [10]. This method consists 

of dividing the bit sequence into groups of eight bits (1 byte) and converting each group into a 

decimal number. After this, a diagram of the distribution of numbers in the range from 0 to 255 

is built. Each histogram position corresponding to one of the numbers determines how many 

times this number occurs in the generated bit sequence. 

In the example presented in Fig. 3, 250000 bits are used, which corresponds to 31250 decimal 

numbers. For each ECA rule, a histogram of the distribution of numbers was built, as well as 

for a combination of rules. The number of initial bits was assumed to be 100 (N=100). 

Histograms of the distribution of numbers for rules 45, 90, 105, and 150 and combinations of 

rules (51, 237), (77, 214), (15, 45, 101) and (101, 107, 111) in Fig. 8 are presented. 

 

Fig 8: Distribution histograms for rules 45, 90, 105, and 150 and combinations of rules 

(51, 237), (77, 214), (15, 45, 101) and (101, 107, 111) 
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As a result of the analysis of the presented histograms of the distribution of numbers, it was 

established that an even distribution of numbers is shown by the histograms constructed for the 

rules 45, 90, 105, 150 and (15, 45, 101). As can be seen from the rules 15, 51, 77, 101, 107, 

111, 214, 237 and their combinations (51, 237), (77, 214), (15, 45, 101) and (101, 107, 111) 

numbers are not distributed evenly. Therefore, these rules cannot be used for encryption. If a 

combination of rules contains at least one rule that individually provides high quality 

encryption, then the distribution of numbers is uniform. The results of the analysis of the use 

of ECA rules for encryption are presented for messages consisting of a small number of bits. 

For a large number of bits, there is no need to use a large memory array to store the key gamma 

bits resulting from the evolution of ECA. It is enough to carry out a cycle of a small number of 

evolutionary steps. If it is necessary to repeat the evolution, it is sufficient to store the initial 

state of the ECA and the rules that implement the evolution. If a combination of evolutions is 

used, the key gamma generator becomes more complicated. 

To improve the quality of encryption, the number of first bits of the message can vary. In this 

case, it is necessary to change the connections between the first and N-th bits of the installation 

sequence, which somewhat complicates the structure of the PRBSG. However, it is more 

difficult for an adversary to recognize the structure of the generator, even if he knows that 

certain ECA rules are used for encryption. The PRBSG itself is simple in both software and 

hardware implementation and does not require complex calculations when generating key bits. 

 

CONCLUSION 

The paper considers and investigates an asynchronous stream cipher implemented on an 

elementary cellular automaton. An elementary cellular automata is used as a key gamma 

generator, the dimension of which can vary and is determined by the number of the first bits of 

the message. An experimental analysis was carried out of the evolutions that are formed by 

various rules of elementary cellular automata, which provide high quality encryption. To 

confirm the selected rules of transitions of cellular automata, histograms of the distribution of 

numbers in the ciphergram were constructed. The use of elementary cellular automata made it 

possible to create a flexible encryption system due to the possibility of constantly changing the 

number of the first bits of the message, which implement the initial settings of the generator. 

The possibility of combining several transition rules is considered. This made it possible to 

establish that a combination of transition rules that do not provide high quality encryption also 

does not provide the required quality of encryption. The key gamma generator can be 

implemented in both software and hardware, and also has a simple structure. The work shows 

that it is better to start encryption not from the first steps of evolution, but after a certain number 

of steps, which makes it difficult for the enemy to determine the first installation bits of the 

message. Due to the possibility of constantly changing the dimension of a cellular automaton 

at different stages of evolution, the reliability of the proposed self-synchronized stream cipher 

increases, which practically ensures high resistance to various types of attacks. 

In further research, the author plans to implement an asynchronous stream cipher based on two-

dimensional cellular automata. 
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