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Abstract 

Breast cancer still ranks amongst the leading causes of death in woman worldwide and early diagnosis is important 

to increase the chance of survival and effective treatment. Current milestones in ML & DL have laid down strong 

platforms for medical diagnosis particularly for cancer diagnosis. The objective of this work is to examine and 

benchmark different kinds of ML and DL models for early detection of breast cancer using WBCD. Normalization 

of the dataset is performed, as well as an imputation of missing values, feature selection, correlation analysis with 

the use of heatmap visualization. A number of algorithms are used, namely Logistic Regression, Support Vector 

Machines (SVM) kernel: linear, radial basis function, and polynomial, K-Nearest Neighbours (KNN), Naive 

Bayes, Decision Trees, Random Forest, AdaBoost, XGBoost, CatBoost, Convolutional Neural Networks (CNN) 

and Artificial Neural Networks (ANN). Furthermore, the blended models containing KNN and SVM with Random 

Forest are reserved to foster prediction accuracy. To perform the hyperparameter optimization, use of Grid Search 

is made. For model measurement, commonly used indicators include accuracy, precision, recall, specificity, 

sensitivity, and F1 score are adopted. The highest accuracy of 98.57% is recorded when the model is trained on 

90% of the total dataset. The outcomes also suggest that deeper learning and ensemble methods are superior to 

conventional recipes of applying machine learning algorithms in early diagnoses and treatment of breast cancer. 

Keywords: Artificial Intelligence, Machine and Deep Learning Algorithms, Data Collection and Analysis, 

Evaluation, Confusion Matrix, Visualization. 

 

INTRODUCTION 

Breast cancer detection and treatment pose major hurdles in oncology. The World Health 

Organization (WHO) reports that breast cancer tops the list of cancers diagnosed in women. In 

2020, an estimated 2.3 million new cases emerged resulting in 685,000 deaths worldwide 

(World Health Organization, 2021). 

This represents about 11.7% of all cancer cases making breast cancer a key factor in cancer 

deaths [1]. To boost survival rates, doctors need to spot and diagnose breast cancer. When 

caught in its early stages, the five-year survival rate for breast cancer can go beyond 90% 

(American Cancer Society, 2021). But standard diagnostic methods like mammography and 

biopsy have their limits. These include differences in how results are interpreted, reliance on 

the radiologist's skill, and wrong positive or negative outcomes. 

Research shows that mammography has a sensitivity of 85%, but this number can drop a lot in 

women with dense breast tissue [2]. Machine learning (ML) and deep learning (DL) have a 

revolutionary impact on healthcare. They provide strong automated, and scalable answers to 

detect and classify diseases. These algorithms can improve traditional ways to diagnose by 

using big data sets and spotting complex patterns.  
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Research shows that DL models can diagnose with over 90% accuracy [3]. Some even do better 

than expert radiologists when finding breast cancer in mammograms. ML methods like 

Random Forests and Support Vector Machines see wide use in breast cancer classification too. 

They give easy-to-understand explanations and trustworthy options [4]. This research tries to 

stack up different ML and DL methods for spotting breast cancer. It'll put these models to the 

test seeing how good they are at splitting tumours into benign or malignant groups. The 

research uses the Wisconsin Breast Cancer Dataset (WBCD) [5]. This dataset helps to check 

the performance of these methods in a straightforward and repeatable way. It shows how they 

could boost the accuracy of diagnoses and lead to better results for patients. 

Data Collection and Preprocessing  

The Wisconsin Breast Cancer Dataset (WBCD) is a valuable data resource for breast cancer 

classification. It encompasses 699 cases, each one describing a patient's biopsy. The aim of the 

dataset is to identify the presence of a benign or malignant tumour by analysing selected 

cellular characteristics. In this dataset, 10 key features provide essential information of tumour 

cells [6]. These characteristics are also the key factors in classifying the benign and malignant 

tumours, which is very important for breast cancer prediction. In the following, we present a 

comprehensive view for each component and its role in medical diagnosis [7]. 

1. Clump Thickness: This feature measures how thick cell clusters are. Malignant tumours 

form denser and thicker clumps than benign tumours, which makes it a key sign of 

malignancy. 

2. Uniformity of Cell Size: This feature shows how much cell sizes vary. A higher level of 

size irregularity often links to malignant tumours, as cancer cells tend to differ more in 

size compared to benign ones. 

3. Uniformity of Cell Shape: This reflects how much cell shapes vary. Malignant cells often 

have irregular shapes, which makes this feature crucial to spot malignancy. 

4. Marginal Adhesion: This checks how well cells stick together. Cancer cells often don't 

stick as well, which lets them spread to nearby tissues. This helps spot aggressive cancers. 

5. Single Epithelial Cell Size: This looks at how big the epithelial cells are. Bigger epithelial 

cells often mean cancer, as cancer cells tend to grow larger. 

6. Bare Nuclei: This counts nuclei without cytoplasm around them. More bare nuclei show 

up in cancer tumours, because cancer cells have odd nuclear structures. 

7. Bland Chromatin: This describes the texture of chromatin in cell nuclei. Coarser and 

more uneven chromatin patterns often point to malignant cells. In contrast benign cells 

show finer more uniform chromatin. 

8. Normal Nucleoli: This feature refers to how nucleoli look and whether they're present in 

the nucleus. Cancer cells often have noticeable and irregular nucleoli. On the flip side 

benign cells typically have nucleoli that look more uniform and less obvious. 



  
  
 
 

DOI: 10.5281/zenodo.14598767 

41 | V 2 0 . I 0 1  

9. Mitoses: This feature measures how fast cells divide. A higher rate of cell division links 

to cancer. Tumours that are cancerous tend to have cells that split. 

10. The target variable puts each sample into categories like: 

 2 (Benign): Non-cancerous tumours 

 4 (Malignant): Cancerous tumours 

                              Table 1: Breast Cancer Diagnostic Dataset Description 

Feature Value Range Description 

ID Unique Unique identifier for each patient 

Clump Thickness 1–10 Thickness of cell clumps 

Uniformity of Cell Size 1–10 Consistency in cell size 

Uniformity of Cell Shape 1–10 Consistency in cell shape 

Marginal Adhesion 1–10 Adhesion of cells to one another 

Single Epithelial Cell Size 1–10 Size of epithelial cells 

Bare Nuclei 1–10 Number of bare nuclei present 

Bland Chromatin 1–10 Texture of chromatin in the cells 

Normal Nucleoli 1–10 Number of normal nucleoli 

Mitoses 1–10 Rate of cell division 

Class (Target) 2 or 4 Benign (2), Malignant (4) 

Data preprocessing is one of the most critical steps in the dataset preparation to feed into the 

machine learning models, in order to remove the errors and make the preparation of analysis. 

For Example - treatment of missing values, scale variance of features, etc., leads to both 

improved performance and accuracy of the sampled model [8]. The following preprocessing 

steps were applied to the dataset: 

1. Handling Missing Values 

In the dataset, the Bare Nuclei feature contained missing values, which could introduce biases 

and reduce the predictive accuracy of machine learning algorithms if left untreated. Missing 

data is a common issue in real-world datasets and can lead to incorrect model predictions or 

even model failure. To fix that, the missing values of the Bare Nuclei feature were imputed 

with the column average [9]. This imputation technique is also feasible to retain the quality of 

the dataset and keep the dataset complete without losing any potential informative information. 

In filling missing values with the mean, we do not lose rows, which may exclude important 

data points, in particular within a medical dataset, where each observation matters. In this 

approach, the statistical information of the data is maintained and so the algorithms are free to 

work with the data without being affected by the presence of missing information. 

2. Normalization  

Normalization is a critical step in dealing with data containing features with different scale. 

The set of data contains numeric descriptors with ranges which are drastically different (for 

instance, features may take values, ranging from small ones (e.g., 1) to large ones (e.g., 1000). 

If these features were not scaled, machine learning model could assign more importance to 

values of those features high which, and hence, it could result in biased predictions [10]. In 
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order to avoid this risk, all numerical attributes are standardized by Min-Max Scaling, which 

reformats feature values into a common scale of [0, 1]. In this step It is verified that no feature 

is dominant in the computation of the model because of its size. All the features are allowed to 

participate equally in the model, which helps make the model learning more equitable. The 

following advantages of normalization can be seen: 

 It speeds up the convergence speed of the optimization algorithms, in particular for models 

such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), which 

are data scale sensitive [11]. 

 It stabilizes the training process and leaves the model less biased with regard to features of 

higher values and improves the performance in general. 

 Through the use of Min-Max Scaling, we guarantee that all the features are standardized, so 

that the model will be able to make predictions with a good accuracy. 

The below diagram illustrates the machine learning pipeline, highlighting key steps like data 

collection, preprocessing, model training, evaluation and model selection. 

 

Figure 1: The Journey of AI Model Development 

3. Correlation Heatmap 

An interrelationship matrix, correlation heatmap, was computed to illustrate how the features 

are related with each other [12]. This analysis demonstrated significant correlations between 
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these features, such as Clump Thickness, Uniformity of Cell Size, Uniformity of Cell Shape, 

Marginal Adhesion, Bare Nuclei, Bland Chromatin, and Normal Nucleoli. These strongly 

related features were found to be putative important predictors for breast cancer classification. 

In addition, the association between the target variable (tumour malignancy) and the principal 

features was examined. Interestingly, significant correlations were found between the target 

variable and Uniformity of Cell Size (0.82), Uniformity of Cell Shape (0.82), and Bare Nuclei 

(0.82). These strong correlations imply that there is a tight relationship between these features 

and malignancy, i.e. On the other hand, a weaker correlation was observed between the target 

variable and Mitoses (0.42), suggesting a weaker link to malignant tumour. 

 

Figure 2: Visualizing Feature Interrelationships: Correlation Heatmap 

The heatmap helps in selecting features that are strongly correlated with the target variable. By 

focusing on significant predictors, it enhances the model’s performance in classifying benign 

and malignant tumours [13]. 

4. Feature-Target Relationships and Distribution Analysis 

To analyze the relationships between key features and the target variable, regardless of whether 

the tumour type is benign or malignant, we considered the most related features to the target as 
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analyzed from the correlation heatmap of the dataset [14]. From the list of properties, we 

examined PAHM features including Shape Uniformity, Size Uniformity, Bare Nuclei, and 

bland Chromatin that showed correlations of 0.82, 0.82, 0.82, and 0.76, respectively. These 

values stress their close relationship with diagnostic result, adding confidence to the differential 

diagnosis of benign and malignant tumours. To provide a visual representation of the 

distribution of these features, the number of cases for both benign and malignant records over 

the specified feature values 1-10 have been plotted as histograms.  

Figure 3: Shape Uniformity by Target             Figure 4: Size Uniformity by Target 

Figure 5: Bland Chromatin by Target         Figure 6: Bare Nucleoli by Target 
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The histograms provide the following insights: 

 Shape Uniformity, Size Uniformity, and Bare Nuclei: These features had a clear 

distinction in their values and malignant cases are mostly observed at a higher value range 

of the feature. This is in concord with their relatively high coefficient of determination with 

the target variable – a sign of their diagnostic usefulness. 

 Bland Chromatin: While its coefficient is slightly lower (0.76) its distribution is equally 

not completely random, malignant seems to have values grouped closer to the right side 

more than the benign ones. 

These histograms are used solely for the purpose of validating earlier conclusions, where we 

concluded that these features are diagnostic; this way the distributions of benign and malignant 

samples in terms of the features and at the various ranges of this feature value are depicted.  

The total archive of the breast cancer dataset includes 458 benign cases and 241 malignant 

cases, which points towards the high proportion of benign tumours among the studied 

population [15]. As an example of the distribution, the pie chart is given below showing the 

distribution of benign and malignant cases in the given dataset. 

 

Figure 7: Malignant vs. Benign Case Distribution 

 

LITERATURE REVIEW 

Cancer detection and diagnosis particularly breast cancer has been of interest in the medical 

and machine learning (ML) domains for many years, and distinct classifications of tumors have 

been conducted using a number of datasets such as the Wisconsin Breast Cancer dataset 

(WBCD). Breast cancer classification has been enhanced by the use of machine learning 

techniques identified as providing high accuracy in tumour classification. Initial explorations 

of using machine learning for breast cancer detection utilized Logistic Regression and Support 
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Vector Machines (SVM) techniques. It means that while logistic regression was good for 

simple binary classification cases, it had problems with more intricate data, and was restricted 

to non-linear data set only. On the other hand, Support Vector Machines (SVM), especially 

those with RBF kernel emerged as more appropriate in mapping dense and compound non-

linear data structures.  

Conducted by Chaurasia and Pal, 2018 found that classifiers with SVM as the input yielded an 

accuracy of 96.84 % on WBCD, in contrast to other classifiers like Naïve Bayes Classifier and 

tree classifier as the input which was attributed to the high dimensional ability to handle data 

[16]. More complex classifiers were what the people started insisting on, and thus we have seen 

Random Forest and Gradient Boosting come into the picture. They provide better accuracy by 

forming multiple decision trees into a single tree to provide better accuracy over that of 

individual classifier. Random Forest, for instance, achieved high accuracy in classification of 

breast cancer; Mandal et al. (2017) obtained an accuracy of 94.2% on WBCD dataset, but the 

main weakness of the approach is high computational time due to the large number of trees 

constructed. Similarly to the previous method, Gradient Boosting exhibited high performance: 

this is an ensemble method that constructs trees step by step in order to correct the mistakes of 

the previous trees [17].  

The new advancements in technologies such as Deep Learning and Neural Networks especially 

Convolutional Neural networks (CNNs) brought a major positive change in the breast cancer 

detection. Special types of artificial neural networks in deep learning are designed to identify 

detailed features of High-dimensional data such as tumour detection. In some of the research, 

CNNs provided performances above 97% on datasets of breast cancer but large datasets and 

extensive computational power proved to be issues [18]. However, in other classification 

problems deep learning feature extraction still promises the best solution given enough data. 

When comparing several machine learning classifiers, Aruna and Nandakishore (2011) used 

Naive Bayes, C4.5 Decision Tree, SVM and K-Nearest Neighbours (K-NN) [19].  

The results of the study showed that SVM was the best classifiers in the study with overall 

accuracy of 96.99%. Some related research, including Chaurasia and Pal (2018) and Mandal et 

al. (2017), also pointed that the highest accuracy was obtained by the SVM, which was around 

95.28% – 96.84%, this implying that classification of breast cancer is greatly facilitated by the 

use of SVM. Notably, ANNs which are capable of approximating complex non- linear 

relationships performed reasonably well in the context of breast cancer detection [20] [21]. 

Delen et al. (2005) have presented the accuracy of 95% through ANNs in their studies, and as 

depicted from above it can be inferred that there is potential of use of neural networks for exact 

tumour classification [22]. This result stressed the need to choose appropriate model for the 

task, as ANNs perform well when dealing with big amounts of data and features 

interdependencies.  

In the recent past there has been a series of studies aimed at incorporating several machine 

learning approaches in classification. Liu et al. (2009) discussed various aspects of the C5 

decision tree algorithm, more specifically, they used bagging which in general enhances the 

model performance by creating new training sets by resampling. Both these techniques resulted 
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in better classification outcomes when used in combination, achieving 94.7% accuracy in this 

hybrid model [23]. Furthermore, the advances in method include hyperparameters setting and 

ensemble stacking as ways to fine-tuning classifiers and get most of them. Breast Cancer 

detection using WBCC resulted in the highest accuracy when SVM, Random Forest, Gradient 

Boosting, ANNs were used. Future work in hybrid models, the stacking of classifiers, and 

hyperparameter tuning may provide increased improvements of classifiers [24]. Altogether 

with deep learning methods those approaches constitute the state-of-the art in breast cancer 

detection research with the ultimate goal of increased accuracy and early-stage detection. 

 

METHODOLOGY 

Based on the above background of the study, this paper examines the different machine learning 

algorithms that can be used to classify breast cancer data. The aim here was to look at the best 

model that would ROYALLY classify well, through several experiments on different 

parameters. The procedure is multistep, involving the initial models and algorithms, the 

application of ensemble techniques, deep learning models, and the initial training of the models 

while explaining the kind of feature extraction and selection to them. Furthermore, the 

performance of the developed models is measured using significant evaluation criteria 

including accuracy and completeness measures like accuracy, precision, recall (sensitivity) and 

F1 measure. 

1. Traditional Machine Learning Models 

The graph below represents the various traditional machine learning algorithms. 

 

Figure 8: The Algorithmic Foundation: Traditional Approaches 
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Before proceeding with an ensemble analysis, each of these models was run separately to 

examine their predictive efficacy and the level of model complication and transparency. 

 The Logistic Regression is the first algorithm under consideration in this research. This 

linear model predicts the likelihood that the given input data point will belong to any class 

of interest. They are used in classification type of problems mainly because of the simplicity 

of the algorithm. In logistic regression, the logistic function used in it generates probabilities 

on which the observations are classified. This model works well with linearly separable data 

relationship between features and labels but poses challenges when faced with more diverse 

relationships [25]. However, such limitation is not very big, especially if one wants to use 

logistic regression model as a starting point and compare it with more complex ones.  

 Naïve Bayes another form of conventional approach derives from Bayes’ theorem and the 

assumption of the independence of features given the class. Nonetheless, it has been 

observed that Naïve Bayes tends to do well when working with high-dimensional data; or 

where the features are not entirely independent of each other. Its simplicity and the time it 

takes to perform the computation is its advantage in many classification problems [26]. 

Consequently, to determine its efficiency of classification for breast cancer data Naïve Bayes 

was employed even though the model is simple and assumes that features are independent. 

 K-Nearest Neighbours (KNN) is a type of non-parametric, lazy learning algorithm that puts 

an instance in a class that is most frequent among its K nearest neighbours in the feature 

space. This implies that the function of KNN largely depends for the choice of neighbours 

(k) and the measure of distance to be used. If k assumes a small value, then the model can 

over fit to the training data while if k assumes a large value, the model may under fit the 

training data [27]. KNN does not need the training step of constructing a model and delivers 

the new example to other points. This model was chosen due to easy training and good 

results in conditions when decision boundaries are of nonlinear form. 

 The Decision Tree algorithm is another flexible model used in the study. Decision trees use 

the creation of decision trees whereby the data is divided into subgroups each based on the 

feature values in a tree like manner. In the tree, each node corresponds to a feature, while 

each branch indicates a decision with a threshold [28]. The terminal nodes are the forecasted 

class. Despite the interpretable feature of decision trees and the easy visualization, there is 

a high risk entailed within high complexity of the dataset. However, to avoid this, pruning 

techniques are exercised to help trim down the tree and enhance the model’s generality.  

 SVM is a type of supervised learning algorithm applied to classification or regression 

problem by searching for an optimal hyperplane that divides the data points into their 

respective classes, maximizing the margin between them. The SVM will make use of kernel 

functions if the data is not linearly separable; this will project the data into higher 

dimensional space so that effective separation can be achieved [29]. SVM is quite robust 

with high-dimensional data, but it is computationally expensive and sensitive to the choice 

of kernel and parameters. It is still good with complex decision boundaries but performs 

very well most of the time. 
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2. Ensemble Models 

In ensemble learning, rather than create a single base model, the prediction of several base 

models is then aggregated. These methods decrease the probability of model overfitting and, 

therefore, the models turn out to be more reliable. Several ensemble models were employed in 

the study and these include; Random Forest, AdaBoost, XGBoost, and CatBoost, all these 

possessing unique characteristics that gave them relevance in classification models.  

 Random Forest is another type of bagging technique the more decision trees required to be 

built on random samples of a data set. The last forecast is evaluated by averaging the results 

of all the trees in the forest. Advantages of this method include; reduction of overfitting and 

stabilization of the model. Random forest is most successful when faced with a high number 

of variables and can handle Numerical independents and categorical independents [30]. In 

particular, it is Random Forest algorithm that was used for this study because of its 

advantage of working well with large datasets and a high number of variables. This makes 

it ideal for proceeding since it employs an ensemble model which is always guaranteed of 

superior performance and reliability. 

 

Figure 9: The Forest Speaks: Majority Rules in Action 
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 AdaBoost is a boosting algorithm which means that a number of weaker classifiers are 

employed and then coalesced to make a stronger classifier. While the bagging technique 

builds models separately, boosting builds models stepwise; here, the current model targets 

the instances which were misclassified by the previous model [31]. AdaBoost reassigns 

higher weights to such instance which the classifier misclassified, to ensure focus on hard 

to classify instances. AdaBoost is always used to enhance poor learners, but it is usually 

affected by noise in training data and may develop high variance if the fine-tuning 

parameters are not properly selected. 

 XGBoost is a parallel version of the gradient boosting algorithm, which consist of base 

decision tree learners. XGBoost is a variation of the gradient boosting that has been made 

with the addition of the regularized term to the loss function and new efficient working 

algorithms that help to take the training process faster [32]. They state that it is popular in 

competitive machine learning as it is proved to have high performance and is scaling well. 

XGBoost is one of the most preferred classification algorithms now because of its ability to 

handle high bias/ low variance cases. 

 CatBoost is anothear gradient boosting algorithm developed for datasets with categorical 

variables. Unlike other boosting methods, CatBoost is capable to handle categorical 

variables directly without need for one-hot encoding conversion, and such other data 

transformations [33]. This renders it very efficient for use when dealing with datasets that 

have a lot of categorical variables. In this study, CatBoost was tried to evaluate its 

performance of handling breast cancer data, especially in the light of having categorical 

features which can be optimally processed with CatBoost only.  

 Other architectures that were considered were Stacked Models including the K- Nearest 

Neighbors (KNN), Random Forest (RF), and Support Vector Machine (SVM). The stacking 

is the type of ensemble learning method in which multiple base models are built for a 

problem and the results are combined using another model known as a meta-model to derive 

at a final conclusion. Stacked model used in this study tried to take advantage of each of the 

base models at its own strength. To make a stronger model, simplicity and efficiency in non-

linear data by KNN, robustness by the Random Forest, and the capacity to identify decision 

boundaries was combined using the SVM. The meta-model in the stacking process was used 

to decide, which base models should be best on the complete data set and how their results 

should be combined in order to minimize overfitting and maximize accuracy. 

3. Deep Learning Models 

To complement the experimental setup, other classical algorithms of machine learning and 

ensemble techniques were employed in the experiment, as well as two deep learning techniques 

in the form of ANN and CNN. These models were selected because of their capabilities of 

capturing complicated non-linear data relationship and the fact that these models have been 

effective in different classification activities.  

 In ANN, a number of neurons are arranged in one or more layers where each neuron analyzes 

and then transmits the result to the next layer. ANNs are very flexible for their capability to 
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map various levels of relationship between inputs and outputs [34]. In this work, we applied 

ANNs in determining the possible use of deep learning models in an assessment of breast 

cancer. Reporting to Multidisciplinary Computing, ANN are particularly helpful when 

working with so big data where there are numerous features, and other models cannot 

identify intricate structures.  

 Another experiment was performed with Convolutional Neural Networks (CNNs), 

commonly employed in image recognition, in order to check if they were capable to provide 

better results than other commonly used machine learning algorithms in breast cancer 

prediction. CNNs employ the convolutional layers in order to acquire interesting features 

on its own [35]. Although CNNs are most utilized in image classification, they were used 

here to evaluate the possibility of their application to automatically learn spatial hierarchies 

in breast cancer data classification. Among them, CNNs are famous for possessing a feature 

that does not require humans to specify features from data or use predefined features. The 

below diagram represents the basic architecture of the Convolutional Neural Networks:  

 

Figure 10: The Neural Net Symphony: Harmonizing Layers 



  
  
 
 

DOI: 10.5281/zenodo.14598767 

52 | V 2 0 . I 0 1  

4. Model Training and Feature Extraction 

When training all models, data sets used follow the training/testing split, with the primary 

configuration used being 80/20. For example, when comparing test performance on different 

training set sizes, a split of 90 / 10 was also used. To detail, in the training of the models, 

hyperparameters optimization and avoiding of overfitting if any were done using techniques 

some of them being grid search and cross-validation [36].  

Yet another experiment was carried out to compare the performance of the models with and 

without the feature extraction step. A heatmap was applied in an assessment of the relationship 

between feature and target variable. As a result of this, the training of the models was done 

using only four features that are most related, out of the original eight. The models were then 

trained using only these features The CoVariance and classical PCA approaches were followed 

to identify a few suitable features for each sample [37]. But within this approach the accuracy 

was observed lesser than other models trained with all features. This result points to a potential 

trade off of reducing the feature space and shows that using the full dataset is crucial when 

making predictions. 

5. Performance Evaluation Metrics 

The models were tested with a few key performance metrics that are used for classification. 

The metrics are accuracy, precision, recall (sensitivity), and F1-score. Each of them provides 

unique insights into the performance of the model. 

Accuracy is the proportion of correct predictions made by the model out of all predictions. It 

is calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

where TP is True Positives, TN is True Negatives, FP is False Positives, and FN is False 

Negatives. 

Precision is the ratio of the true positive predictions towards all positive predictions made by 

the model. It is formulated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall (sensitivity) is the measure of the actual positive instances that the model correctly 

identified as positive. It is mathematically calculated as: 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

F1-score is the harmonic average of precision and recall such that the two metrics should be 

well balanced, so it is formulated as: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
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These evaluation metrics will give a holistic view of how well each model performs in terms 

of accuracy and its ability to pick true positives while keeping the false positives and false 

negatives to a minimum [38]. Combining these metrics will enable the study to provide a well-

rounded view of the effectiveness of models in breast cancer classification. 

 

RESULTS AND DISCUSSION 

In this study, several predictive models of machine learning with the breast cancer classification 

dataset were compared and analyzed comprehensively. Further, the dataset split into 80% 

training dataset and 20% testing dataset was used. The experiment showed that the models’ 

accuracy was of about 95-98%. Critically assessing the models under discussion, the greatest 

accuracy of 97.86% was obtained with the Random Forest, as well as by the application of 

Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN). These models 

were also favourably balanced within measures including precision, sensitivity, and F1-score, 

proving the efficiency and reliability of the models in addressing the dataset. An extra test was 

performed to check the effectiveness of feature selection in detail another experiment was 

conducted where instead of doing feature selection and eliminating unimportant features only 

four features that are most suitable and have high correlation with the target variable were 

selected for training the Random Forest model using them. When in this configuration and with 

an 80/20 data division the accuracy that was attained was 96.16%. Specifically, what we 

observed was a slightly lower level of accuracy even though this could be attributed to the fact 

that the model performance was impressive during this test compared to the previous 

performance when the entire feature set was used. As this result suggests, the optimized 

decision rule takes advantage of the entirety of the feature set to detect patterns of novel 

complexity embedded in the data thus optimizing for accuracy. Another experiment worth of 

note was when the data split ratio was tweaked to 90% for the training set and 10% for the test 

set. Under this configuration, the accuracy of the Random Forest model was at the highest with 

98.57%, which was the highest score achieved in this research. This result corroborates the idea 

of using a larger training set and highlights the fact that Random Forest is more appropriate for 

extracting meaningful patterns from the variety of representations of the training data and 

achieving a good balance between bias and variance. Logistic Regression and Naïve Bayes 

also gave quite good results at around 97% accuracy. Nevertheless, these models fell short of 

the top performer performance in robustness and adaptability. Reasonable performance was 

achieved on boosting algorithms like AdaBoost and XGBoost, but with high sensitivity to 

hyperparameters when the dataset itself is interesting to learn from. The results indicate that 

ensemble based and deep learning models are both superior to traditional approaches. Though 

Random Forest was the superior model, ANNs and CNNs were both reliable and robust.  

The other thing that the study noted is how inaccurate the prediction is when limited dataset 

was used. The implications from these insights emphasize the key role of data representation, 

as well as model configuration, in producing the best possible outcomes for breast cancer 

classification. The following table illustrates the performance metrics of a number of machine 

learning algorithms, in terms of accuracy, F1-score, precision, and sensitivity. These results are 

obtained through the models' evaluation based on 80-20 training/testing data split. 
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Table 2: Performance Metric Matrix: Unveiling Model Performance 

Algorithm Accuracy (%) F1-Score Precision Sensitivity 

Random Forest 97.86 0.98 0.97 0.98 

CNN 97.86 0.97 0.98 0.97 

Logistic Regression 97.14 0.97 0.97 0.96 

K-Nearest Neighbours 97.14 0.95 0.97 0.93 

ANN 97.14 0.97 0.98 0.96 

Decision Tree 96.74 0.97 0.97 0.96 

Stacked Model 96.43 0.96 0.97 0.95 

Naïve Bayes 96.42 0.94 0.91 0.97 

CatBoost 96.40 0.94 0.95 0.88 

Support Vector Machine 96.16 0.93 0.97 0.90 

XGBoost 95.70 0.91 0.95 0.88 

AdaBoost 95.00 0.91 0.97 0.86 

The Google Drive Link to see the implemented coding of all the algorithms is given below: 

https://drive.google.com/file/d/1n4Sr22MS75_x1UBn2mkF57txwupXHm-

7/view?usp=sharing 

A bar graph is drawn depicting the accuracy of different machine learning algorithms. The 

graph visualizes the comparative performance of the models based on their accuracy scores. 

 

Figure 11: Accuracy Spectrum: A Battle of Models 

A confusion matrix is derived from a 90-10 split of the dataset for the Random Forest model. 

The true positives, true negatives, false positives, and false negatives are shown here in the 

confusion matrix that is obtained from the performance of the model. 



  
  
 
 

DOI: 10.5281/zenodo.14598767 

55 | V 2 0 . I 0 1  

 

Figure 12: Random Forest Revealed: The Confusion Matrix in Action 

The Road Ahead: Enhancing Breast Cancer Diagnosis 

Machine learning (ML) and deep learning (DL) in breast cancer diagnosis is poised to change 

their trajectory towards more effective early detection, personalized treatment and improved 

patient outcomes. Building on the results of this work, several other key areas can be 

investigated to improve the effectiveness and real-world applicability of these tools. 

1. Hybrid Models and Ensemble Techniques 

The hybrid models of different machine learning algorithms, especially Random Forest and 

SVM, can help future increases of accuracy and robustness in breast cancer diagnosis. To 

further improve performance, advanced ensemble methods, such as stacking, boosting, and 

bagging will further reduce errors. When combined with Deep Reinforcement Learning (DRL), 

models are able to adapt over time, something critical for real time clinical applications [39]. 

A more comprehensive approach to diagnostics is afforded by cross modal hybrid models that 

incorporate medical imaging with genetic and clinical data. Furthermore, Neural Architecture 

Search (NAS) can search for models of architecture aiming at greater efficiency and 

performance for target real world application. 

2. Hyperparameter Optimization 

The ability to develop future advancements in breast cancer diagnosis relies heavily on 

optimizing and predicting with hyperparameters and custom feature combinations based on 

quantum inspired optimization techniques such as quantum annealing to accelerate 

hyperparameter tuning and increase prediction accuracy [40]. Final Meta learning as another 

optimization can also be Meta learning by automating the hyperparameter selection depending 

on past training runs for further model efficiency. Distributed hyperparameter optimization 
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occurs across multiple institutions through Federated learning, while having the potential to 

protect data privacy. Evolutionary algorithms can also assist in balance multiple objectives like 

accuracy and computational efficiency and results in better and more robust model for the 

clinical use. 

3. Incorporation of Larger and Diverse Datasets 

Adding clinical characteristics, demographic factor data and genetic characteristics, lifestyle 

data and family history to larger, more diverse patient sets will improve future models and 

uplift the generality and precision of the models. When integrated with real time clinical data 

from wearables and health apps, the predictive power may actually be boosted even further to 

provide more recent and timely data of breast cancer detection as well as reveal newer trends 

in detection. 

4. Deep Learning for Image-Based Diagnosis 

Because CNNs have high possibility to unify medical image data, such as the mammograms, 

ultrasounds, and MRIs, with structure data for improving diagnostic ability and 

accommodating complex patterns simultaneously [41]. If clinical, genetic and imaging data 

ware used then we would have multi modal models, this means that it would offer more 

comprehensive information for a patient’s condition, enhance the accuracy of the diagnosis, 

and allow for more specific and personalized treatment. It may also result in better and more 

customized patient treatment and care and therefore; lead to better and more positive patient 

health results.  

5. Explainability and Transparency in ML Models 

It is important to improve the interpretability of machine learning models, and especially of 

deep learning models, in order to be able to use them in clinical settings. By employing 

explainability tools, particularly SHAP values, LIME and attention mechanisms, clinicians will 

find ourselves better vested in understanding how models are reaching conclusions, and are 

more likely to accept and use these tools in practice [42]. Furthermore, Human in the Loop 

(HITL) systems integrate model with clinicians to oversee result and verbalize to enhance 

model. In particular, this continuous feedback loop not only increases the model’s accuracy, 

but also makes the model’s relevance and reliability for real world medical environments. 

6. Real-Time and Continuous Monitoring  

Real time collection of health data from wearable devices and mobile health apps enables us to 

continuously monitor patients to identify early signs of breast cancer before symptoms are 

presented in the clinic by predictive models [43]. If it done early on, it can make a difference 

in outcomes for patients. Furthermore, some of this data can be used to predict how well 

different treatment options may work for an individual based on their characteristics (machine 

learning). It personalizes treatment strategies so that you have the most effective treatment for 

that patient’s needs, while at the same time maximizing recovery while minimizing side effects. 
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7. Clinical Integration and Adoption 

Machine learning models should be incorporated into existing clinical workflows for adoption 

in clinical settings. In this consideration, intuitive user interfaces are developed that are 

compatible with Electronic Health Record (EHR) systems in order to facilitate Healthcare 

Professionals’ easy access and utilization of the models [44]. Also, these models need to be 

tested and validated very well prior to their widespread adoption and in to the clinical practice 

to ensure that patients are safe. These models will be consistent, reliable, safe and effective 

when implemented in practice if standardized protocols are established for their 

implementation. 

8. Collaborative Research and Open-Source Platforms 

Through open-source collaboration platforms, more research, clinicians, and developers can 

collaborate to increase cooperation and innovation, and increase access to machine learning 

models to other healthcare systems [45]. These platforms can harness shared resources to help 

bring more effective diagnostic tools into production faster. Crowdsourced data collection 

efforts can also provide us with larger and more diverse datasets needed to train robust models 

that can generalize across other populations. Such collaborative ML model development adds 

substantially to the accuracy and applicability of ML models in breast cancer diagnosis and 

treatment. 

 

Figure 13: Charting the Future: AI’s Evolution in Breast Cancer Detection 
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CONCLUSION  

Thus, this research has been able to analyze and compare multiple ML and DL models for the 

early detection of breast cancer by using the WBCD. To ensure that the models gave the highest 

probabilities of correct predictions, various preprocessing steps such as, normalization of data, 

handling of missing values, selection and correlation analysis of features among others were 

performed. Some of the optimized algorithms applied which are as follows, Logistic 

Regression, SVM, KNN, Naïve Bayes, Decision Trees, Random Forest, Ada Boost & XG 

Boost & Cat Boost, CNN & ANN. It was also observed that there is better accuracy on the 

combined models including KNN, SVM and at last, Random Forest. The application of 

Hyperparameter optimization through Grid Search again raised the bar in the model’s 

performance. The best performance was 98.57% of accuracy proving that, once again, both, 

deeper learning models and ensemble methods, are superior to the traditional types of ML in 

the area of early detection. The obtained outcomes could also potentially allow improving the 

diagnosis and treatment of further stages of breast cancer by using developments in advanced 

machine learning and deep learning. The future developments for this study can be taken even 

further by using more complicated DL models, expanding the additional data sets, and 

improving the hyperparameters’ tuning strategies for increasing the precision and applicability 

of the models. Also, immediate putting into practice and application of these models in clinical 

practices could lead to early treatment and improved control of breast cancer. 
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